Mister Exam

Other calculators

Integral of (x^2-3sinx)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  / 2           \   
 |  \x  - 3*sin(x)/ dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \left(x^{2} - 3 \sin{\left(x \right)}\right)\, dx$$
Integral(x^2 - 3*sin(x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                      
 |                                      3
 | / 2           \                     x 
 | \x  - 3*sin(x)/ dx = C + 3*cos(x) + --
 |                                     3 
/                                        
$$\int \left(x^{2} - 3 \sin{\left(x \right)}\right)\, dx = C + \frac{x^{3}}{3} + 3 \cos{\left(x \right)}$$
The graph
The answer [src]
-8/3 + 3*cos(1)
$$- \frac{8}{3} + 3 \cos{\left(1 \right)}$$
=
=
-8/3 + 3*cos(1)
$$- \frac{8}{3} + 3 \cos{\left(1 \right)}$$
-8/3 + 3*cos(1)
Numerical answer [src]
-1.04575974906225
-1.04575974906225

    Use the examples entering the upper and lower limits of integration.