Integral of (x^2-2x+3)ln(x) dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=log(x).
Then let du=xdx and substitute du:
∫(ue3u−2ue2u+3ueu)du
-
Integrate term-by-term:
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u and let dv(u)=e3u.
Then du(u)=1.
To find v(u):
-
There are multiple ways to do this integral.
Method #1
-
Let u=3u.
Then let du=3du and substitute 3du:
∫9eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫3eudu=3∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 3eu
Now substitute u back in:
3e3u
Method #2
-
Let u=e3u.
Then let du=3e3udu and substitute 3du:
∫91du
-
The integral of a constant times a function is the constant times the integral of the function:
∫31du=3∫1du
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
So, the result is: 3u
Now substitute u back in:
3e3u
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫3e3udu=3∫e3udu
-
Let u=3u.
Then let du=3du and substitute 3du:
∫9eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫3eudu=3∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 3eu
Now substitute u back in:
3e3u
So, the result is: 9e3u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2ue2u)du=−2∫ue2udu
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u and let dv(u)=e2u.
Then du(u)=1.
To find v(u):
-
Let u=2u.
Then let du=2du and substitute 2du:
∫4eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫2eudu=2∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2e2u
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫2e2udu=2∫e2udu
-
Let u=2u.
Then let du=2du and substitute 2du:
∫4eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫2eudu=2∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2e2u
So, the result is: 4e2u
So, the result is: −ue2u+2e2u
-
The integral of a constant times a function is the constant times the integral of the function:
∫3ueudu=3∫ueudu
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u and let dv(u)=eu.
Then du(u)=1.
To find v(u):
-
The integral of the exponential function is itself.
∫eudu=eu
Now evaluate the sub-integral.
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 3ueu−3eu
The result is: 3ue3u−ue2u+3ueu−9e3u+2e2u−3eu
Now substitute u back in:
3x3log(x)−9x3−x2log(x)+2x2+3xlog(x)−3x
Method #2
-
Rewrite the integrand:
(x2−2x+3)log(x)=x2log(x)−2xlog(x)+3log(x)
-
Integrate term-by-term:
-
Let u=log(x).
Then let du=xdx and substitute du:
∫ue3udu
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u and let dv(u)=e3u.
Then du(u)=1.
To find v(u):
-
Let u=3u.
Then let du=3du and substitute 3du:
∫9eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫3eudu=3∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 3eu
Now substitute u back in:
3e3u
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫3e3udu=3∫e3udu
-
Let u=3u.
Then let du=3du and substitute 3du:
∫9eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫3eudu=3∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 3eu
Now substitute u back in:
3e3u
So, the result is: 9e3u
Now substitute u back in:
3x3log(x)−9x3
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2xlog(x))dx=−2∫xlog(x)dx
-
Let u=log(x).
Then let du=xdx and substitute du:
∫ue2udu
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u and let dv(u)=e2u.
Then du(u)=1.
To find v(u):
-
Let u=2u.
Then let du=2du and substitute 2du:
∫4eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫2eudu=2∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2e2u
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫2e2udu=2∫e2udu
-
Let u=2u.
Then let du=2du and substitute 2du:
∫4eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫2eudu=2∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2e2u
So, the result is: 4e2u
Now substitute u back in:
2x2log(x)−4x2
So, the result is: −x2log(x)+2x2
-
The integral of a constant times a function is the constant times the integral of the function:
∫3log(x)dx=3∫log(x)dx
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=log(x) and let dv(x)=1.
Then du(x)=x1.
To find v(x):
-
The integral of a constant is the constant times the variable of integration:
∫1dx=x
Now evaluate the sub-integral.
-
The integral of a constant is the constant times the variable of integration:
∫1dx=x
So, the result is: 3xlog(x)−3x
The result is: 3x3log(x)−9x3−x2log(x)+2x2+3xlog(x)−3x
Method #3
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=log(x) and let dv(x)=x2−2x+3.
Then du(x)=x1.
To find v(x):
-
Integrate term-by-term:
-
The integral of xn is n+1xn+1 when n=−1:
∫x2dx=3x3
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2x)dx=−2∫xdx
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=2x2
So, the result is: −x2
-
The integral of a constant is the constant times the variable of integration:
∫3dx=3x
The result is: 3x3−x2+3x
Now evaluate the sub-integral.
-
Rewrite the integrand:
x3x3−x2+3x=3x2−x+3
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫3x2dx=3∫x2dx
-
The integral of xn is n+1xn+1 when n=−1:
∫x2dx=3x3
So, the result is: 9x3
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−x)dx=−∫xdx
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=2x2
So, the result is: −2x2
-
The integral of a constant is the constant times the variable of integration:
∫3dx=3x
The result is: 9x3−2x2+3x
Method #4
-
Rewrite the integrand:
(x2−2x+3)log(x)=x2log(x)−2xlog(x)+3log(x)
-
Integrate term-by-term:
-
Let u=log(x).
Then let du=xdx and substitute du:
∫ue3udu
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u and let dv(u)=e3u.
Then du(u)=1.
To find v(u):
-
Let u=3u.
Then let du=3du and substitute 3du:
∫9eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫3eudu=3∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 3eu
Now substitute u back in:
3e3u
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫3e3udu=3∫e3udu
-
Let u=3u.
Then let du=3du and substitute 3du:
∫9eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫3eudu=3∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 3eu
Now substitute u back in:
3e3u
So, the result is: 9e3u
Now substitute u back in:
3x3log(x)−9x3
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2xlog(x))dx=−2∫xlog(x)dx
-
Let u=log(x).
Then let du=xdx and substitute du:
∫ue2udu
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u and let dv(u)=e2u.
Then du(u)=1.
To find v(u):
-
Let u=2u.
Then let du=2du and substitute 2du:
∫4eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫2eudu=2∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2e2u
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫2e2udu=2∫e2udu
-
Let u=2u.
Then let du=2du and substitute 2du:
∫4eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫2eudu=2∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2e2u
So, the result is: 4e2u
Now substitute u back in:
2x2log(x)−4x2
So, the result is: −x2log(x)+2x2
-
The integral of a constant times a function is the constant times the integral of the function:
∫3log(x)dx=3∫log(x)dx
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=log(x) and let dv(x)=1.
Then du(x)=x1.
To find v(x):
-
The integral of a constant is the constant times the variable of integration:
∫1dx=x
Now evaluate the sub-integral.
-
The integral of a constant is the constant times the variable of integration:
∫1dx=x
So, the result is: 3xlog(x)−3x
The result is: 3x3log(x)−9x3−x2log(x)+2x2+3xlog(x)−3x
-
Now simplify:
18x(6x2log(x)−2x2−18xlog(x)+9x+54log(x)−54)
-
Add the constant of integration:
18x(6x2log(x)−2x2−18xlog(x)+9x+54log(x)−54)+constant
The answer is:
18x(6x2log(x)−2x2−18xlog(x)+9x+54log(x)−54)+constant
The answer (Indefinite)
[src]
/
| 2 3 3
| / 2 \ x x 2 x *log(x)
| \x - 2*x + 3/*log(x) dx = C + -- - 3*x - -- - x *log(x) + 3*x*log(x) + ---------
| 2 9 3
/
(3x3−x2+3x)logx−182x3−9x2+54x
−1847
=
−1847
Use the examples entering the upper and lower limits of integration.