Mister Exam

Other calculators

Integral of (x^2-2x+3)ln(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                         
  /                         
 |                          
 |  / 2          \          
 |  \x  - 2*x + 3/*log(x) dx
 |                          
/                           
0                           
01(x22x+3)log(x)dx\int\limits_{0}^{1} \left(x^{2} - 2 x + 3\right) \log{\left(x \right)}\, dx
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=log(x)u = \log{\left(x \right)}.

      Then let du=dxxdu = \frac{dx}{x} and substitute dudu:

      (ue3u2ue2u+3ueu)du\int \left(u e^{3 u} - 2 u e^{2 u} + 3 u e^{u}\right)\, du

      1. Integrate term-by-term:

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(u)=uu{\left(u \right)} = u and let dv(u)=e3u\operatorname{dv}{\left(u \right)} = e^{3 u}.

          Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

          To find v(u)v{\left(u \right)}:

          1. There are multiple ways to do this integral.

            Method #1

            1. Let u=3uu = 3 u.

              Then let du=3dudu = 3 du and substitute du3\frac{du}{3}:

              eu9du\int \frac{e^{u}}{9}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                eu3du=eudu3\int \frac{e^{u}}{3}\, du = \frac{\int e^{u}\, du}{3}

                1. The integral of the exponential function is itself.

                  eudu=eu\int e^{u}\, du = e^{u}

                So, the result is: eu3\frac{e^{u}}{3}

              Now substitute uu back in:

              e3u3\frac{e^{3 u}}{3}

            Method #2

            1. Let u=e3uu = e^{3 u}.

              Then let du=3e3ududu = 3 e^{3 u} du and substitute du3\frac{du}{3}:

              19du\int \frac{1}{9}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                13du=1du3\int \frac{1}{3}\, du = \frac{\int 1\, du}{3}

                1. The integral of a constant is the constant times the variable of integration:

                  1du=u\int 1\, du = u

                So, the result is: u3\frac{u}{3}

              Now substitute uu back in:

              e3u3\frac{e^{3 u}}{3}

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          e3u3du=e3udu3\int \frac{e^{3 u}}{3}\, du = \frac{\int e^{3 u}\, du}{3}

          1. Let u=3uu = 3 u.

            Then let du=3dudu = 3 du and substitute du3\frac{du}{3}:

            eu9du\int \frac{e^{u}}{9}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              eu3du=eudu3\int \frac{e^{u}}{3}\, du = \frac{\int e^{u}\, du}{3}

              1. The integral of the exponential function is itself.

                eudu=eu\int e^{u}\, du = e^{u}

              So, the result is: eu3\frac{e^{u}}{3}

            Now substitute uu back in:

            e3u3\frac{e^{3 u}}{3}

          So, the result is: e3u9\frac{e^{3 u}}{9}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (2ue2u)du=2ue2udu\int \left(- 2 u e^{2 u}\right)\, du = - 2 \int u e^{2 u}\, du

          1. Use integration by parts:

            udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

            Let u(u)=uu{\left(u \right)} = u and let dv(u)=e2u\operatorname{dv}{\left(u \right)} = e^{2 u}.

            Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

            To find v(u)v{\left(u \right)}:

            1. Let u=2uu = 2 u.

              Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

              eu4du\int \frac{e^{u}}{4}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                eu2du=eudu2\int \frac{e^{u}}{2}\, du = \frac{\int e^{u}\, du}{2}

                1. The integral of the exponential function is itself.

                  eudu=eu\int e^{u}\, du = e^{u}

                So, the result is: eu2\frac{e^{u}}{2}

              Now substitute uu back in:

              e2u2\frac{e^{2 u}}{2}

            Now evaluate the sub-integral.

          2. The integral of a constant times a function is the constant times the integral of the function:

            e2u2du=e2udu2\int \frac{e^{2 u}}{2}\, du = \frac{\int e^{2 u}\, du}{2}

            1. Let u=2uu = 2 u.

              Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

              eu4du\int \frac{e^{u}}{4}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                eu2du=eudu2\int \frac{e^{u}}{2}\, du = \frac{\int e^{u}\, du}{2}

                1. The integral of the exponential function is itself.

                  eudu=eu\int e^{u}\, du = e^{u}

                So, the result is: eu2\frac{e^{u}}{2}

              Now substitute uu back in:

              e2u2\frac{e^{2 u}}{2}

            So, the result is: e2u4\frac{e^{2 u}}{4}

          So, the result is: ue2u+e2u2- u e^{2 u} + \frac{e^{2 u}}{2}

        1. The integral of a constant times a function is the constant times the integral of the function:

          3ueudu=3ueudu\int 3 u e^{u}\, du = 3 \int u e^{u}\, du

          1. Use integration by parts:

            udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

            Let u(u)=uu{\left(u \right)} = u and let dv(u)=eu\operatorname{dv}{\left(u \right)} = e^{u}.

            Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

            To find v(u)v{\left(u \right)}:

            1. The integral of the exponential function is itself.

              eudu=eu\int e^{u}\, du = e^{u}

            Now evaluate the sub-integral.

          2. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          So, the result is: 3ueu3eu3 u e^{u} - 3 e^{u}

        The result is: ue3u3ue2u+3ueue3u9+e2u23eu\frac{u e^{3 u}}{3} - u e^{2 u} + 3 u e^{u} - \frac{e^{3 u}}{9} + \frac{e^{2 u}}{2} - 3 e^{u}

      Now substitute uu back in:

      x3log(x)3x39x2log(x)+x22+3xlog(x)3x\frac{x^{3} \log{\left(x \right)}}{3} - \frac{x^{3}}{9} - x^{2} \log{\left(x \right)} + \frac{x^{2}}{2} + 3 x \log{\left(x \right)} - 3 x

    Method #2

    1. Rewrite the integrand:

      (x22x+3)log(x)=x2log(x)2xlog(x)+3log(x)\left(x^{2} - 2 x + 3\right) \log{\left(x \right)} = x^{2} \log{\left(x \right)} - 2 x \log{\left(x \right)} + 3 \log{\left(x \right)}

    2. Integrate term-by-term:

      1. Let u=log(x)u = \log{\left(x \right)}.

        Then let du=dxxdu = \frac{dx}{x} and substitute dudu:

        ue3udu\int u e^{3 u}\, du

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(u)=uu{\left(u \right)} = u and let dv(u)=e3u\operatorname{dv}{\left(u \right)} = e^{3 u}.

          Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

          To find v(u)v{\left(u \right)}:

          1. Let u=3uu = 3 u.

            Then let du=3dudu = 3 du and substitute du3\frac{du}{3}:

            eu9du\int \frac{e^{u}}{9}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              eu3du=eudu3\int \frac{e^{u}}{3}\, du = \frac{\int e^{u}\, du}{3}

              1. The integral of the exponential function is itself.

                eudu=eu\int e^{u}\, du = e^{u}

              So, the result is: eu3\frac{e^{u}}{3}

            Now substitute uu back in:

            e3u3\frac{e^{3 u}}{3}

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          e3u3du=e3udu3\int \frac{e^{3 u}}{3}\, du = \frac{\int e^{3 u}\, du}{3}

          1. Let u=3uu = 3 u.

            Then let du=3dudu = 3 du and substitute du3\frac{du}{3}:

            eu9du\int \frac{e^{u}}{9}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              eu3du=eudu3\int \frac{e^{u}}{3}\, du = \frac{\int e^{u}\, du}{3}

              1. The integral of the exponential function is itself.

                eudu=eu\int e^{u}\, du = e^{u}

              So, the result is: eu3\frac{e^{u}}{3}

            Now substitute uu back in:

            e3u3\frac{e^{3 u}}{3}

          So, the result is: e3u9\frac{e^{3 u}}{9}

        Now substitute uu back in:

        x3log(x)3x39\frac{x^{3} \log{\left(x \right)}}{3} - \frac{x^{3}}{9}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (2xlog(x))dx=2xlog(x)dx\int \left(- 2 x \log{\left(x \right)}\right)\, dx = - 2 \int x \log{\left(x \right)}\, dx

        1. Let u=log(x)u = \log{\left(x \right)}.

          Then let du=dxxdu = \frac{dx}{x} and substitute dudu:

          ue2udu\int u e^{2 u}\, du

          1. Use integration by parts:

            udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

            Let u(u)=uu{\left(u \right)} = u and let dv(u)=e2u\operatorname{dv}{\left(u \right)} = e^{2 u}.

            Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

            To find v(u)v{\left(u \right)}:

            1. Let u=2uu = 2 u.

              Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

              eu4du\int \frac{e^{u}}{4}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                eu2du=eudu2\int \frac{e^{u}}{2}\, du = \frac{\int e^{u}\, du}{2}

                1. The integral of the exponential function is itself.

                  eudu=eu\int e^{u}\, du = e^{u}

                So, the result is: eu2\frac{e^{u}}{2}

              Now substitute uu back in:

              e2u2\frac{e^{2 u}}{2}

            Now evaluate the sub-integral.

          2. The integral of a constant times a function is the constant times the integral of the function:

            e2u2du=e2udu2\int \frac{e^{2 u}}{2}\, du = \frac{\int e^{2 u}\, du}{2}

            1. Let u=2uu = 2 u.

              Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

              eu4du\int \frac{e^{u}}{4}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                eu2du=eudu2\int \frac{e^{u}}{2}\, du = \frac{\int e^{u}\, du}{2}

                1. The integral of the exponential function is itself.

                  eudu=eu\int e^{u}\, du = e^{u}

                So, the result is: eu2\frac{e^{u}}{2}

              Now substitute uu back in:

              e2u2\frac{e^{2 u}}{2}

            So, the result is: e2u4\frac{e^{2 u}}{4}

          Now substitute uu back in:

          x2log(x)2x24\frac{x^{2} \log{\left(x \right)}}{2} - \frac{x^{2}}{4}

        So, the result is: x2log(x)+x22- x^{2} \log{\left(x \right)} + \frac{x^{2}}{2}

      1. The integral of a constant times a function is the constant times the integral of the function:

        3log(x)dx=3log(x)dx\int 3 \log{\left(x \right)}\, dx = 3 \int \log{\left(x \right)}\, dx

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(x)=log(x)u{\left(x \right)} = \log{\left(x \right)} and let dv(x)=1\operatorname{dv}{\left(x \right)} = 1.

          Then du(x)=1x\operatorname{du}{\left(x \right)} = \frac{1}{x}.

          To find v(x)v{\left(x \right)}:

          1. The integral of a constant is the constant times the variable of integration:

            1dx=x\int 1\, dx = x

          Now evaluate the sub-integral.

        2. The integral of a constant is the constant times the variable of integration:

          1dx=x\int 1\, dx = x

        So, the result is: 3xlog(x)3x3 x \log{\left(x \right)} - 3 x

      The result is: x3log(x)3x39x2log(x)+x22+3xlog(x)3x\frac{x^{3} \log{\left(x \right)}}{3} - \frac{x^{3}}{9} - x^{2} \log{\left(x \right)} + \frac{x^{2}}{2} + 3 x \log{\left(x \right)} - 3 x

    Method #3

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(x)=log(x)u{\left(x \right)} = \log{\left(x \right)} and let dv(x)=x22x+3\operatorname{dv}{\left(x \right)} = x^{2} - 2 x + 3.

      Then du(x)=1x\operatorname{du}{\left(x \right)} = \frac{1}{x}.

      To find v(x)v{\left(x \right)}:

      1. Integrate term-by-term:

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (2x)dx=2xdx\int \left(- 2 x\right)\, dx = - 2 \int x\, dx

          1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

            xdx=x22\int x\, dx = \frac{x^{2}}{2}

          So, the result is: x2- x^{2}

        1. The integral of a constant is the constant times the variable of integration:

          3dx=3x\int 3\, dx = 3 x

        The result is: x33x2+3x\frac{x^{3}}{3} - x^{2} + 3 x

      Now evaluate the sub-integral.

    2. Rewrite the integrand:

      x33x2+3xx=x23x+3\frac{\frac{x^{3}}{3} - x^{2} + 3 x}{x} = \frac{x^{2}}{3} - x + 3

    3. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        x23dx=x2dx3\int \frac{x^{2}}{3}\, dx = \frac{\int x^{2}\, dx}{3}

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

        So, the result is: x39\frac{x^{3}}{9}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (x)dx=xdx\int \left(- x\right)\, dx = - \int x\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        So, the result is: x22- \frac{x^{2}}{2}

      1. The integral of a constant is the constant times the variable of integration:

        3dx=3x\int 3\, dx = 3 x

      The result is: x39x22+3x\frac{x^{3}}{9} - \frac{x^{2}}{2} + 3 x

    Method #4

    1. Rewrite the integrand:

      (x22x+3)log(x)=x2log(x)2xlog(x)+3log(x)\left(x^{2} - 2 x + 3\right) \log{\left(x \right)} = x^{2} \log{\left(x \right)} - 2 x \log{\left(x \right)} + 3 \log{\left(x \right)}

    2. Integrate term-by-term:

      1. Let u=log(x)u = \log{\left(x \right)}.

        Then let du=dxxdu = \frac{dx}{x} and substitute dudu:

        ue3udu\int u e^{3 u}\, du

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(u)=uu{\left(u \right)} = u and let dv(u)=e3u\operatorname{dv}{\left(u \right)} = e^{3 u}.

          Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

          To find v(u)v{\left(u \right)}:

          1. Let u=3uu = 3 u.

            Then let du=3dudu = 3 du and substitute du3\frac{du}{3}:

            eu9du\int \frac{e^{u}}{9}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              eu3du=eudu3\int \frac{e^{u}}{3}\, du = \frac{\int e^{u}\, du}{3}

              1. The integral of the exponential function is itself.

                eudu=eu\int e^{u}\, du = e^{u}

              So, the result is: eu3\frac{e^{u}}{3}

            Now substitute uu back in:

            e3u3\frac{e^{3 u}}{3}

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          e3u3du=e3udu3\int \frac{e^{3 u}}{3}\, du = \frac{\int e^{3 u}\, du}{3}

          1. Let u=3uu = 3 u.

            Then let du=3dudu = 3 du and substitute du3\frac{du}{3}:

            eu9du\int \frac{e^{u}}{9}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              eu3du=eudu3\int \frac{e^{u}}{3}\, du = \frac{\int e^{u}\, du}{3}

              1. The integral of the exponential function is itself.

                eudu=eu\int e^{u}\, du = e^{u}

              So, the result is: eu3\frac{e^{u}}{3}

            Now substitute uu back in:

            e3u3\frac{e^{3 u}}{3}

          So, the result is: e3u9\frac{e^{3 u}}{9}

        Now substitute uu back in:

        x3log(x)3x39\frac{x^{3} \log{\left(x \right)}}{3} - \frac{x^{3}}{9}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (2xlog(x))dx=2xlog(x)dx\int \left(- 2 x \log{\left(x \right)}\right)\, dx = - 2 \int x \log{\left(x \right)}\, dx

        1. Let u=log(x)u = \log{\left(x \right)}.

          Then let du=dxxdu = \frac{dx}{x} and substitute dudu:

          ue2udu\int u e^{2 u}\, du

          1. Use integration by parts:

            udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

            Let u(u)=uu{\left(u \right)} = u and let dv(u)=e2u\operatorname{dv}{\left(u \right)} = e^{2 u}.

            Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

            To find v(u)v{\left(u \right)}:

            1. Let u=2uu = 2 u.

              Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

              eu4du\int \frac{e^{u}}{4}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                eu2du=eudu2\int \frac{e^{u}}{2}\, du = \frac{\int e^{u}\, du}{2}

                1. The integral of the exponential function is itself.

                  eudu=eu\int e^{u}\, du = e^{u}

                So, the result is: eu2\frac{e^{u}}{2}

              Now substitute uu back in:

              e2u2\frac{e^{2 u}}{2}

            Now evaluate the sub-integral.

          2. The integral of a constant times a function is the constant times the integral of the function:

            e2u2du=e2udu2\int \frac{e^{2 u}}{2}\, du = \frac{\int e^{2 u}\, du}{2}

            1. Let u=2uu = 2 u.

              Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

              eu4du\int \frac{e^{u}}{4}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                eu2du=eudu2\int \frac{e^{u}}{2}\, du = \frac{\int e^{u}\, du}{2}

                1. The integral of the exponential function is itself.

                  eudu=eu\int e^{u}\, du = e^{u}

                So, the result is: eu2\frac{e^{u}}{2}

              Now substitute uu back in:

              e2u2\frac{e^{2 u}}{2}

            So, the result is: e2u4\frac{e^{2 u}}{4}

          Now substitute uu back in:

          x2log(x)2x24\frac{x^{2} \log{\left(x \right)}}{2} - \frac{x^{2}}{4}

        So, the result is: x2log(x)+x22- x^{2} \log{\left(x \right)} + \frac{x^{2}}{2}

      1. The integral of a constant times a function is the constant times the integral of the function:

        3log(x)dx=3log(x)dx\int 3 \log{\left(x \right)}\, dx = 3 \int \log{\left(x \right)}\, dx

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(x)=log(x)u{\left(x \right)} = \log{\left(x \right)} and let dv(x)=1\operatorname{dv}{\left(x \right)} = 1.

          Then du(x)=1x\operatorname{du}{\left(x \right)} = \frac{1}{x}.

          To find v(x)v{\left(x \right)}:

          1. The integral of a constant is the constant times the variable of integration:

            1dx=x\int 1\, dx = x

          Now evaluate the sub-integral.

        2. The integral of a constant is the constant times the variable of integration:

          1dx=x\int 1\, dx = x

        So, the result is: 3xlog(x)3x3 x \log{\left(x \right)} - 3 x

      The result is: x3log(x)3x39x2log(x)+x22+3xlog(x)3x\frac{x^{3} \log{\left(x \right)}}{3} - \frac{x^{3}}{9} - x^{2} \log{\left(x \right)} + \frac{x^{2}}{2} + 3 x \log{\left(x \right)} - 3 x

  2. Now simplify:

    x(6x2log(x)2x218xlog(x)+9x+54log(x)54)18\frac{x \left(6 x^{2} \log{\left(x \right)} - 2 x^{2} - 18 x \log{\left(x \right)} + 9 x + 54 \log{\left(x \right)} - 54\right)}{18}

  3. Add the constant of integration:

    x(6x2log(x)2x218xlog(x)+9x+54log(x)54)18+constant\frac{x \left(6 x^{2} \log{\left(x \right)} - 2 x^{2} - 18 x \log{\left(x \right)} + 9 x + 54 \log{\left(x \right)} - 54\right)}{18}+ \mathrm{constant}


The answer is:

x(6x2log(x)2x218xlog(x)+9x+54log(x)54)18+constant\frac{x \left(6 x^{2} \log{\left(x \right)} - 2 x^{2} - 18 x \log{\left(x \right)} + 9 x + 54 \log{\left(x \right)} - 54\right)}{18}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                                                 
 |                                 2          3                             3       
 | / 2          \                 x          x     2                       x *log(x)
 | \x  - 2*x + 3/*log(x) dx = C + -- - 3*x - -- - x *log(x) + 3*x*log(x) + ---------
 |                                2          9                                 3    
/                                                                                   
(x33x2+3x)logx2x39x2+54x18\left({{x^3}\over{3}}-x^2+3\,x\right)\,\log x-{{2\,x^3-9\,x^2+54\,x }\over{18}}
The answer [src]
-47 
----
 18 
4718-{{47}\over{18}}
=
=
-47 
----
 18 
4718- \frac{47}{18}
Numerical answer [src]
-2.61111111111111
-2.61111111111111

    Use the examples entering the upper and lower limits of integration.