Mister Exam

Other calculators

Integral of (x^2-2x+3)/(xcqrtx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |   2             
 |  x  - 2*x + 3   
 |  ------------ dx
 |        ___      
 |    x*\/ x       
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{\left(x^{2} - 2 x\right) + 3}{\sqrt{x} x}\, dx$$
Integral((x^2 - 2*x + 3)/((x*sqrt(x))), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                              
 |                                               
 |  2                                         3/2
 | x  - 2*x + 3            6         ___   2*x   
 | ------------ dx = C - ----- - 4*\/ x  + ------
 |       ___               ___               3   
 |   x*\/ x              \/ x                    
 |                                               
/                                                
$$\int \frac{\left(x^{2} - 2 x\right) + 3}{\sqrt{x} x}\, dx = C + \frac{2 x^{\frac{3}{2}}}{3} - 4 \sqrt{x} - \frac{6}{\sqrt{x}}$$
The graph
The answer [src]
oo
$$\infty$$
=
=
oo
$$\infty$$
oo
Numerical answer [src]
22393345789.6361
22393345789.6361

    Use the examples entering the upper and lower limits of integration.