Mister Exam

Other calculators


x^2-2x-3

Integral of x^2-2x-3 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  3                  
  /                  
 |                   
 |  / 2          \   
 |  \x  - 2*x - 3/ dx
 |                   
/                    
-1                   
$$\int\limits_{-1}^{3} \left(\left(x^{2} - 2 x\right) - 3\right)\, dx$$
Integral(x^2 - 2*x - 3, (x, -1, 3))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of is when :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      The result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                     
 |                                     3
 | / 2          \           2         x 
 | \x  - 2*x - 3/ dx = C - x  - 3*x + --
 |                                    3 
/                                       
$$\int \left(\left(x^{2} - 2 x\right) - 3\right)\, dx = C + \frac{x^{3}}{3} - x^{2} - 3 x$$
The graph
The answer [src]
-32/3
$$- \frac{32}{3}$$
=
=
-32/3
$$- \frac{32}{3}$$
-32/3
Numerical answer [src]
-10.6666666666667
-10.6666666666667
The graph
Integral of x^2-2x-3 dx

    Use the examples entering the upper and lower limits of integration.