oo / | | 2 | 2 -a*x | x *e dx | / -oo
Integral(x^2*exp((-a)*x^2), (x, -oo, oo))
Use integration by parts:
Let and let .
Then .
To find :
ErfRule(a=-a, b=0, c=0, context=exp(-a*x**2), symbol=x)
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
Don't know the steps in finding this integral.
But the integral is
So, the result is:
Now simplify:
Add the constant of integration:
The answer is:
_____ / ____ 2 / -1 / a*x \ | / 2 \ \/ pi *x * / --- *erfi|------| | 2 _____ | 2 / ___\ / ___\ -a*x | \/ a | ____| | 2 -a*x ____ / -1 | x *erfi\I*x*\/ a / erfi\I*x*\/ a / I*x*e | \\/ -a / | x *e dx = C + \/ pi * / --- *|- ------------------ + --------------- - --------------| - -------------------------------- | \/ a | 2 4*a ____ ___| 2 / \ 2*\/ pi *\/ a /
/ ____ | \/ pi pi | ------ for |arg(a)| < -- | 3/2 2 | 2*a | | oo < / | | | | 2 | | 2 -a*x | | x *e dx otherwise | | |/ \-oo
=
/ ____ | \/ pi pi | ------ for |arg(a)| < -- | 3/2 2 | 2*a | | oo < / | | | | 2 | | 2 -a*x | | x *e dx otherwise | | |/ \-oo
Piecewise((sqrt(pi)/(2*a^(3/2)), Abs(arg(a)) < pi/2), (Integral(x^2*exp(-a*x^2), (x, -oo, oo)), True))
Use the examples entering the upper and lower limits of integration.