Mister Exam

Other calculators

Integral of x^3sin^3(x^4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |   3    3/ 4\   
 |  x *sin \x / dx
 |                
/                 
0                 
$$\int\limits_{0}^{1} x^{3} \sin^{3}{\left(x^{4} \right)}\, dx$$
Integral(x^3*sin(x^4)^3, (x, 0, 1))
The answer (Indefinite) [src]
  /                                                
 |                         3/ 4\      2/ 4\    / 4\
 |  3    3/ 4\          cos \x /   sin \x /*cos\x /
 | x *sin \x / dx = C - -------- - ----------------
 |                         6              4        
/                                                  
$$\int x^{3} \sin^{3}{\left(x^{4} \right)}\, dx = C - \frac{\sin^{2}{\left(x^{4} \right)} \cos{\left(x^{4} \right)}}{4} - \frac{\cos^{3}{\left(x^{4} \right)}}{6}$$
The graph
The answer [src]
       3         2          
1   cos (1)   sin (1)*cos(1)
- - ------- - --------------
6      6            4       
$$- \frac{\sin^{2}{\left(1 \right)} \cos{\left(1 \right)}}{4} - \frac{\cos^{3}{\left(1 \right)}}{6} + \frac{1}{6}$$
=
=
       3         2          
1   cos (1)   sin (1)*cos(1)
- - ------- - --------------
6      6            4       
$$- \frac{\sin^{2}{\left(1 \right)} \cos{\left(1 \right)}}{4} - \frac{\cos^{3}{\left(1 \right)}}{6} + \frac{1}{6}$$
1/6 - cos(1)^3/6 - sin(1)^2*cos(1)/4
Numerical answer [src]
0.0447351406372145
0.0447351406372145

    Use the examples entering the upper and lower limits of integration.