Mister Exam

Other calculators


x^3+x^4

Integral of x^3+x^4 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |  / 3    4\   
 |  \x  + x / dx
 |              
/               
0               
01(x4+x3)dx\int\limits_{0}^{1} \left(x^{4} + x^{3}\right)\, dx
Integral(x^3 + x^4, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      x4dx=x55\int x^{4}\, dx = \frac{x^{5}}{5}

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

    The result is: x55+x44\frac{x^{5}}{5} + \frac{x^{4}}{4}

  2. Now simplify:

    x4(4x+5)20\frac{x^{4} \cdot \left(4 x + 5\right)}{20}

  3. Add the constant of integration:

    x4(4x+5)20+constant\frac{x^{4} \cdot \left(4 x + 5\right)}{20}+ \mathrm{constant}


The answer is:

x4(4x+5)20+constant\frac{x^{4} \cdot \left(4 x + 5\right)}{20}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                          
 |                     4    5
 | / 3    4\          x    x 
 | \x  + x / dx = C + -- + --
 |                    4    5 
/                            
x55+x44{{x^5}\over{5}}+{{x^4}\over{4}}
The graph
0.001.000.100.200.300.400.500.600.700.800.9004
The answer [src]
9/20
920{{9}\over{20}}
=
=
9/20
920\frac{9}{20}
Numerical answer [src]
0.45
0.45
The graph
Integral of x^3+x^4 dx

    Use the examples entering the upper and lower limits of integration.