Mister Exam

Other calculators


x^3+4x

Integral of x^3+4x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |  / 3      \   
 |  \x  + 4*x/ dx
 |               
/                
0                
01(x3+4x)dx\int\limits_{0}^{1} \left(x^{3} + 4 x\right)\, dx
Integral(x^3 + 4*x, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

    1. The integral of a constant times a function is the constant times the integral of the function:

      4xdx=4xdx\int 4 x\, dx = 4 \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: 2x22 x^{2}

    The result is: x44+2x2\frac{x^{4}}{4} + 2 x^{2}

  2. Now simplify:

    x2(x2+8)4\frac{x^{2} \left(x^{2} + 8\right)}{4}

  3. Add the constant of integration:

    x2(x2+8)4+constant\frac{x^{2} \left(x^{2} + 8\right)}{4}+ \mathrm{constant}


The answer is:

x2(x2+8)4+constant\frac{x^{2} \left(x^{2} + 8\right)}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                             
 |                             4
 | / 3      \             2   x 
 | \x  + 4*x/ dx = C + 2*x  + --
 |                            4 
/                               
x44+2x2{{x^4}\over{4}}+2\,x^2
The graph
0.001.000.100.200.300.400.500.600.700.800.90010
The answer [src]
9/4
94{{9}\over{4}}
=
=
9/4
94\frac{9}{4}
Numerical answer [src]
2.25
2.25
The graph
Integral of x^3+4x dx

    Use the examples entering the upper and lower limits of integration.