Mister Exam

Other calculators


(x^3+2x)sinh(x)

Integral of (x^3+2x)sinh(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |  / 3      \           
 |  \x  + 2*x/*sinh(x) dx
 |                       
/                        
0                        
$$\int\limits_{0}^{1} \left(x^{3} + 2 x\right) \sinh{\left(x \right)}\, dx$$
Integral((x^3 + 2*x)*sinh(x), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. Don't know the steps in finding this integral.

      But the integral is

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Don't know the steps in finding this integral.

        But the integral is

      So, the result is:

    The result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                               
 |                                                                                
 | / 3      \                               3              2                      
 | \x  + 2*x/*sinh(x) dx = C - 8*sinh(x) + x *cosh(x) - 3*x *sinh(x) + 8*x*cosh(x)
 |                                                                                
/                                                                                 
$$\int \left(x^{3} + 2 x\right) \sinh{\left(x \right)}\, dx = C + x^{3} \cosh{\left(x \right)} - 3 x^{2} \sinh{\left(x \right)} + 8 x \cosh{\left(x \right)} - 8 \sinh{\left(x \right)}$$
The graph
The answer [src]
-11*sinh(1) + 9*cosh(1)
$$- 11 \sinh{\left(1 \right)} + 9 \cosh{\left(1 \right)}$$
=
=
-11*sinh(1) + 9*cosh(1)
$$- 11 \sinh{\left(1 \right)} + 9 \cosh{\left(1 \right)}$$
-11*sinh(1) + 9*cosh(1)
Numerical answer [src]
0.960512583255378
0.960512583255378
The graph
Integral of (x^3+2x)sinh(x) dx

    Use the examples entering the upper and lower limits of integration.