Mister Exam

Other calculators

Integral of (x)^3*sin((x)^4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |   3    / 4\   
 |  x *sin\x / dx
 |               
/                
0                
$$\int\limits_{0}^{1} x^{3} \sin{\left(x^{4} \right)}\, dx$$
Integral(x^3*sin(x^4), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                           
 |                        / 4\
 |  3    / 4\          cos\x /
 | x *sin\x / dx = C - -------
 |                        4   
/                             
$$\int x^{3} \sin{\left(x^{4} \right)}\, dx = C - \frac{\cos{\left(x^{4} \right)}}{4}$$
The graph
The answer [src]
1   cos(1)
- - ------
4     4   
$$\frac{1}{4} - \frac{\cos{\left(1 \right)}}{4}$$
=
=
1   cos(1)
- - ------
4     4   
$$\frac{1}{4} - \frac{\cos{\left(1 \right)}}{4}$$
1/4 - cos(1)/4
Numerical answer [src]
0.114924423532965
0.114924423532965

    Use the examples entering the upper and lower limits of integration.