x^3*e^(x/3)
1 / | | x | - | 3 3 | x *e dx | / 0
Integral(x^3*E^(x/3), (x, 0, 1))
Use integration by parts:
Let and let .
Then .
To find :
There are multiple ways to do this integral.
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of a constant is the constant times the variable of integration:
So, the result is:
Now substitute back in:
Now evaluate the sub-integral.
Use integration by parts:
Let and let .
Then .
To find :
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
Now evaluate the sub-integral.
Use integration by parts:
Let and let .
Then .
To find :
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
So, the result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | | x x x x x | - - - - - | 3 3 3 2 3 3 3 3 | x *e dx = C - 486*e - 27*x *e + 3*x *e + 162*x*e | /
1/3 486 - 348*e
=
1/3 486 - 348*e
Use the examples entering the upper and lower limits of integration.