Mister Exam

Other calculators


X^3*cos3x

Integral of X^3*cos3x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |   3            
 |  x *cos(3*x) dx
 |                
/                 
0                 
$$\int\limits_{0}^{1} x^{3} \cos{\left(3 x \right)}\, dx$$
Integral(x^3*cos(3*x), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of cosine is sine:

        So, the result is:

      Now substitute back in:

    Now evaluate the sub-integral.

  2. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of sine is negative cosine:

        So, the result is:

      Now substitute back in:

    Now evaluate the sub-integral.

  3. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of cosine is sine:

        So, the result is:

      Now substitute back in:

    Now evaluate the sub-integral.

  4. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of sine is negative cosine:

        So, the result is:

      Now substitute back in:

    So, the result is:

  5. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                          
 |                                                   2             3         
 |  3                   2*cos(3*x)   2*x*sin(3*x)   x *cos(3*x)   x *sin(3*x)
 | x *cos(3*x) dx = C - ---------- - ------------ + ----------- + -----------
 |                          27            9              3             3     
/                                                                            
$$\int x^{3} \cos{\left(3 x \right)}\, dx = C + \frac{x^{3} \sin{\left(3 x \right)}}{3} + \frac{x^{2} \cos{\left(3 x \right)}}{3} - \frac{2 x \sin{\left(3 x \right)}}{9} - \frac{2 \cos{\left(3 x \right)}}{27}$$
The graph
The answer [src]
2    sin(3)   7*cos(3)
-- + ------ + --------
27     9         27   
$$\frac{7 \cos{\left(3 \right)}}{27} + \frac{\sin{\left(3 \right)}}{9} + \frac{2}{27}$$
=
=
2    sin(3)   7*cos(3)
-- + ------ + --------
27     9         27   
$$\frac{7 \cos{\left(3 \right)}}{27} + \frac{\sin{\left(3 \right)}}{9} + \frac{2}{27}$$
2/27 + sin(3)/9 + 7*cos(3)/27
Numerical answer [src]
-0.166910646371241
-0.166910646371241
The graph
Integral of X^3*cos3x dx

    Use the examples entering the upper and lower limits of integration.