Mister Exam

Other calculators

Integral of x^(3)exp(-2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo            
  /            
 |             
 |   3  -2*x   
 |  x *e     dx
 |             
/              
0              
0x3e2xdx\int\limits_{0}^{\infty} x^{3} e^{- 2 x}\, dx
Integral(x^3*exp(-2*x), (x, 0, oo))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=x3u{\left(x \right)} = x^{3} and let dv(x)=e2x\operatorname{dv}{\left(x \right)} = e^{- 2 x}.

    Then du(x)=3x2\operatorname{du}{\left(x \right)} = 3 x^{2}.

    To find v(x)v{\left(x \right)}:

    1. Let u=2xu = - 2 x.

      Then let du=2dxdu = - 2 dx and substitute du2- \frac{du}{2}:

      (eu2)du\int \left(- \frac{e^{u}}{2}\right)\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        False\text{False}

        1. The integral of the exponential function is itself.

          eudu=eu\int e^{u}\, du = e^{u}

        So, the result is: eu2- \frac{e^{u}}{2}

      Now substitute uu back in:

      e2x2- \frac{e^{- 2 x}}{2}

    Now evaluate the sub-integral.

  2. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=3x22u{\left(x \right)} = - \frac{3 x^{2}}{2} and let dv(x)=e2x\operatorname{dv}{\left(x \right)} = e^{- 2 x}.

    Then du(x)=3x\operatorname{du}{\left(x \right)} = - 3 x.

    To find v(x)v{\left(x \right)}:

    1. Let u=2xu = - 2 x.

      Then let du=2dxdu = - 2 dx and substitute du2- \frac{du}{2}:

      (eu2)du\int \left(- \frac{e^{u}}{2}\right)\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        False\text{False}

        1. The integral of the exponential function is itself.

          eudu=eu\int e^{u}\, du = e^{u}

        So, the result is: eu2- \frac{e^{u}}{2}

      Now substitute uu back in:

      e2x2- \frac{e^{- 2 x}}{2}

    Now evaluate the sub-integral.

  3. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=3x2u{\left(x \right)} = \frac{3 x}{2} and let dv(x)=e2x\operatorname{dv}{\left(x \right)} = e^{- 2 x}.

    Then du(x)=32\operatorname{du}{\left(x \right)} = \frac{3}{2}.

    To find v(x)v{\left(x \right)}:

    1. Let u=2xu = - 2 x.

      Then let du=2dxdu = - 2 dx and substitute du2- \frac{du}{2}:

      (eu2)du\int \left(- \frac{e^{u}}{2}\right)\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        False\text{False}

        1. The integral of the exponential function is itself.

          eudu=eu\int e^{u}\, du = e^{u}

        So, the result is: eu2- \frac{e^{u}}{2}

      Now substitute uu back in:

      e2x2- \frac{e^{- 2 x}}{2}

    Now evaluate the sub-integral.

  4. The integral of a constant times a function is the constant times the integral of the function:

    (3e2x4)dx=3e2xdx4\int \left(- \frac{3 e^{- 2 x}}{4}\right)\, dx = - \frac{3 \int e^{- 2 x}\, dx}{4}

    1. Let u=2xu = - 2 x.

      Then let du=2dxdu = - 2 dx and substitute du2- \frac{du}{2}:

      (eu2)du\int \left(- \frac{e^{u}}{2}\right)\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        False\text{False}

        1. The integral of the exponential function is itself.

          eudu=eu\int e^{u}\, du = e^{u}

        So, the result is: eu2- \frac{e^{u}}{2}

      Now substitute uu back in:

      e2x2- \frac{e^{- 2 x}}{2}

    So, the result is: 3e2x8\frac{3 e^{- 2 x}}{8}

  5. Now simplify:

    (4x3+6x2+6x+3)e2x8- \frac{\left(4 x^{3} + 6 x^{2} + 6 x + 3\right) e^{- 2 x}}{8}

  6. Add the constant of integration:

    (4x3+6x2+6x+3)e2x8+constant- \frac{\left(4 x^{3} + 6 x^{2} + 6 x + 3\right) e^{- 2 x}}{8}+ \mathrm{constant}


The answer is:

(4x3+6x2+6x+3)e2x8+constant- \frac{\left(4 x^{3} + 6 x^{2} + 6 x + 3\right) e^{- 2 x}}{8}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                             
 |                      -2*x        -2*x      2  -2*x    3  -2*x
 |  3  -2*x          3*e       3*x*e       3*x *e       x *e    
 | x *e     dx = C - ------- - --------- - ---------- - --------
 |                      8          4           4           2    
/                                                               
x3e2xdx=Cx3e2x23x2e2x43xe2x43e2x8\int x^{3} e^{- 2 x}\, dx = C - \frac{x^{3} e^{- 2 x}}{2} - \frac{3 x^{2} e^{- 2 x}}{4} - \frac{3 x e^{- 2 x}}{4} - \frac{3 e^{- 2 x}}{8}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.5-0.5
The answer [src]
3/8
38\frac{3}{8}
=
=
3/8
38\frac{3}{8}
3/8

    Use the examples entering the upper and lower limits of integration.