Mister Exam

Other calculators


x^(3/2)/sqrt(2)

Integral of x^(3/2)/sqrt(2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1         
  /         
 |          
 |    3/2   
 |   x      
 |  ----- dx
 |    ___   
 |  \/ 2    
 |          
/           
1/2         
$$\int\limits_{\frac{1}{2}}^{1} \frac{x^{\frac{3}{2}}}{\sqrt{2}}\, dx$$
Integral(x^(3/2)/(sqrt(2)), (x, 1/2, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. The integral of is when :

    So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                        ___
 |                   5/2 \/ 2 
 |   3/2          2*x   *-----
 |  x                      2  
 | ----- dx = C + ------------
 |   ___               5      
 | \/ 2                       
 |                            
/                             
$${{\sqrt{2}\,x^{{{5}\over{2}}}}\over{5}}$$
The graph
The answer [src]
         ___
  1    \/ 2 
- -- + -----
  20     5  
$${{{{2}\over{5}}-{{1}\over{5\,2^{{{3}\over{2}}}}}}\over{\sqrt{2}}}$$
=
=
         ___
  1    \/ 2 
- -- + -----
  20     5  
$$- \frac{1}{20} + \frac{\sqrt{2}}{5}$$
Numerical answer [src]
0.232842712474619
0.232842712474619
The graph
Integral of x^(3/2)/sqrt(2) dx

    Use the examples entering the upper and lower limits of integration.