Mister Exam

Other calculators


x^(1/2)-x^2

Integral of x^(1/2)-x^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  /  ___    2\   
 |  \\/ x  - x / dx
 |                 
/                  
0                  
01(xx2)dx\int\limits_{0}^{1} \left(\sqrt{x} - x^{2}\right)\, dx
Integral(sqrt(x) - x^2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      xdx=2x323\int \sqrt{x}\, dx = \frac{2 x^{\frac{3}{2}}}{3}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (x2)dx=x2dx\int \left(- x^{2}\right)\, dx = - \int x^{2}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

      So, the result is: x33- \frac{x^{3}}{3}

    The result is: 2x323x33\frac{2 x^{\frac{3}{2}}}{3} - \frac{x^{3}}{3}

  2. Add the constant of integration:

    2x323x33+constant\frac{2 x^{\frac{3}{2}}}{3} - \frac{x^{3}}{3}+ \mathrm{constant}


The answer is:

2x323x33+constant\frac{2 x^{\frac{3}{2}}}{3} - \frac{x^{3}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                 
 |                        3      3/2
 | /  ___    2\          x    2*x   
 | \\/ x  - x / dx = C - -- + ------
 |                       3      3   
/                                   
(xx2)dx=C+2x323x33\int \left(\sqrt{x} - x^{2}\right)\, dx = C + \frac{2 x^{\frac{3}{2}}}{3} - \frac{x^{3}}{3}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.00.5
The answer [src]
1/3
13\frac{1}{3}
=
=
1/3
13\frac{1}{3}
Numerical answer [src]
0.333333333333333
0.333333333333333
The graph
Integral of x^(1/2)-x^2 dx

    Use the examples entering the upper and lower limits of integration.