Mister Exam

Other calculators


x^(1/2)-x^2

Integral of x^(1/2)-x^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  /  ___    2\   
 |  \\/ x  - x / dx
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \left(\sqrt{x} - x^{2}\right)\, dx$$
Integral(sqrt(x) - x^2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                 
 |                        3      3/2
 | /  ___    2\          x    2*x   
 | \\/ x  - x / dx = C - -- + ------
 |                       3      3   
/                                   
$$\int \left(\sqrt{x} - x^{2}\right)\, dx = C + \frac{2 x^{\frac{3}{2}}}{3} - \frac{x^{3}}{3}$$
The graph
The answer [src]
1/3
$$\frac{1}{3}$$
=
=
1/3
$$\frac{1}{3}$$
Numerical answer [src]
0.333333333333333
0.333333333333333
The graph
Integral of x^(1/2)-x^2 dx

    Use the examples entering the upper and lower limits of integration.