oo / | | k | x dx | / 0
Integral(x^k, (x, 0, oo))
The integral of is when :
Add the constant of integration:
The answer is:
/ // 1 + k \ | ||x | | k ||------ for k != -1| | x dx = C + |<1 + k | | || | / ||log(x) otherwise | \\ /
/ 0 for And(re(k) > -1, re(k) < -1) | | oo | / | | < | k | | x dx otherwise | | |/ |0 \
=
/ 0 for And(re(k) > -1, re(k) < -1) | | oo | / | | < | k | | x dx otherwise | | |/ |0 \
Piecewise((0, (re(k) > -1)∧(re(k) < -1)), (Integral(x^k, (x, 0, oo)), True))
Use the examples entering the upper and lower limits of integration.