Mister Exam

Integral of (x^k)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo      
  /      
 |       
 |   k   
 |  x  dx
 |       
/        
0        
$$\int\limits_{0}^{\infty} x^{k}\, dx$$
Integral(x^k, (x, 0, oo))
Detail solution
  1. The integral of is when :

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /            // 1 + k             \
 |             ||x                  |
 |  k          ||------  for k != -1|
 | x  dx = C + |<1 + k              |
 |             ||                   |
/              ||log(x)   otherwise |
               \\                   /
$$\int x^{k}\, dx = C + \begin{cases} \frac{x^{k + 1}}{k + 1} & \text{for}\: k \neq -1 \\\log{\left(x \right)} & \text{otherwise} \end{cases}$$
The answer [src]
/    0      for And(re(k) > -1, re(k) < -1)
|                                          
| oo                                       
|  /                                       
| |                                        
< |   k                                    
| |  x  dx             otherwise           
| |                                        
|/                                         
|0                                         
\                                          
$$\begin{cases} 0 & \text{for}\: \operatorname{re}{\left(k\right)} > -1 \wedge \operatorname{re}{\left(k\right)} < -1 \\\int\limits_{0}^{\infty} x^{k}\, dx & \text{otherwise} \end{cases}$$
=
=
/    0      for And(re(k) > -1, re(k) < -1)
|                                          
| oo                                       
|  /                                       
| |                                        
< |   k                                    
| |  x  dx             otherwise           
| |                                        
|/                                         
|0                                         
\                                          
$$\begin{cases} 0 & \text{for}\: \operatorname{re}{\left(k\right)} > -1 \wedge \operatorname{re}{\left(k\right)} < -1 \\\int\limits_{0}^{\infty} x^{k}\, dx & \text{otherwise} \end{cases}$$
Piecewise((0, (re(k) > -1)∧(re(k) < -1)), (Integral(x^k, (x, 0, oo)), True))

    Use the examples entering the upper and lower limits of integration.