Mister Exam

Other calculators

Integral of x^4+2x^2-1 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2                   
  /                   
 |                    
 |  / 4      2    \   
 |  \x  + 2*x  - 1/ dx
 |                    
/                     
-2                    
22((x4+2x2)1)dx\int\limits_{-2}^{2} \left(\left(x^{4} + 2 x^{2}\right) - 1\right)\, dx
Integral(x^4 + 2*x^2 - 1, (x, -2, 2))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x4dx=x55\int x^{4}\, dx = \frac{x^{5}}{5}

      1. The integral of a constant times a function is the constant times the integral of the function:

        2x2dx=2x2dx\int 2 x^{2}\, dx = 2 \int x^{2}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

        So, the result is: 2x33\frac{2 x^{3}}{3}

      The result is: x55+2x33\frac{x^{5}}{5} + \frac{2 x^{3}}{3}

    1. The integral of a constant is the constant times the variable of integration:

      (1)dx=x\int \left(-1\right)\, dx = - x

    The result is: x55+2x33x\frac{x^{5}}{5} + \frac{2 x^{3}}{3} - x

  2. Add the constant of integration:

    x55+2x33x+constant\frac{x^{5}}{5} + \frac{2 x^{3}}{3} - x+ \mathrm{constant}


The answer is:

x55+2x33x+constant\frac{x^{5}}{5} + \frac{2 x^{3}}{3} - x+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                      
 |                               5      3
 | / 4      2    \              x    2*x 
 | \x  + 2*x  - 1/ dx = C - x + -- + ----
 |                              5     3  
/                                        
((x4+2x2)1)dx=C+x55+2x33x\int \left(\left(x^{4} + 2 x^{2}\right) - 1\right)\, dx = C + \frac{x^{5}}{5} + \frac{2 x^{3}}{3} - x
The graph
-2.0-1.5-1.0-0.52.00.00.51.01.5-5050
The answer [src]
292
---
 15
29215\frac{292}{15}
=
=
292
---
 15
29215\frac{292}{15}
292/15
Numerical answer [src]
19.4666666666667
19.4666666666667

    Use the examples entering the upper and lower limits of integration.