Integral of x^4-x^2 dx
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of xn is n+1xn+1 when n=−1:
∫x4dx=5x5
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−x2)dx=−∫x2dx
-
The integral of xn is n+1xn+1 when n=−1:
∫x2dx=3x3
So, the result is: −3x3
The result is: 5x5−3x3
-
Add the constant of integration:
5x5−3x3+constant
The answer is:
5x5−3x3+constant
The answer (Indefinite)
[src]
/
| 3 5
| / 4 2\ x x
| \x - x / dx = C - -- + --
| 3 5
/
∫(x4−x2)dx=C+5x5−3x3
The graph
Use the examples entering the upper and lower limits of integration.