Mister Exam

Other calculators


x^4-x^2

Integral of x^4-x^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |  / 4    2\   
 |  \x  - x / dx
 |              
/               
0               
01(x4x2)dx\int\limits_{0}^{1} \left(x^{4} - x^{2}\right)\, dx
Integral(x^4 - x^2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      x4dx=x55\int x^{4}\, dx = \frac{x^{5}}{5}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (x2)dx=x2dx\int \left(- x^{2}\right)\, dx = - \int x^{2}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

      So, the result is: x33- \frac{x^{3}}{3}

    The result is: x55x33\frac{x^{5}}{5} - \frac{x^{3}}{3}

  2. Add the constant of integration:

    x55x33+constant\frac{x^{5}}{5} - \frac{x^{3}}{3}+ \mathrm{constant}


The answer is:

x55x33+constant\frac{x^{5}}{5} - \frac{x^{3}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                          
 |                     3    5
 | / 4    2\          x    x 
 | \x  - x / dx = C - -- + --
 |                    3    5 
/                            
(x4x2)dx=C+x55x33\int \left(x^{4} - x^{2}\right)\, dx = C + \frac{x^{5}}{5} - \frac{x^{3}}{3}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-0.500.25
The answer [src]
-2/15
215- \frac{2}{15}
=
=
-2/15
215- \frac{2}{15}
-2/15
Numerical answer [src]
-0.133333333333333
-0.133333333333333
The graph
Integral of x^4-x^2 dx

    Use the examples entering the upper and lower limits of integration.