Integral of x(3-x)⁷dx dx
The solution
Detail solution
-
Rewrite the integrand:
x(3−x)7=−x8+21x7−189x6+945x5−2835x4+5103x3−5103x2+2187x
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−x8)dx=−∫x8dx
-
The integral of xn is n+1xn+1 when n=−1:
∫x8dx=9x9
So, the result is: −9x9
-
The integral of a constant times a function is the constant times the integral of the function:
∫21x7dx=21∫x7dx
-
The integral of xn is n+1xn+1 when n=−1:
∫x7dx=8x8
So, the result is: 821x8
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−189x6)dx=−189∫x6dx
-
The integral of xn is n+1xn+1 when n=−1:
∫x6dx=7x7
So, the result is: −27x7
-
The integral of a constant times a function is the constant times the integral of the function:
∫945x5dx=945∫x5dx
-
The integral of xn is n+1xn+1 when n=−1:
∫x5dx=6x6
So, the result is: 2315x6
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2835x4)dx=−2835∫x4dx
-
The integral of xn is n+1xn+1 when n=−1:
∫x4dx=5x5
So, the result is: −567x5
-
The integral of a constant times a function is the constant times the integral of the function:
∫5103x3dx=5103∫x3dx
-
The integral of xn is n+1xn+1 when n=−1:
∫x3dx=4x4
So, the result is: 45103x4
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−5103x2)dx=−5103∫x2dx
-
The integral of xn is n+1xn+1 when n=−1:
∫x2dx=3x3
So, the result is: −1701x3
-
The integral of a constant times a function is the constant times the integral of the function:
∫2187xdx=2187∫xdx
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=2x2
So, the result is: 22187x2
The result is: −9x9+821x8−27x7+2315x6−567x5+45103x4−1701x3+22187x2
-
Now simplify:
72x2(−8x7+189x6−1944x5+11340x4−40824x3+91854x2−122472x+78732)
-
Add the constant of integration:
72x2(−8x7+189x6−1944x5+11340x4−40824x3+91854x2−122472x+78732)+constant
The answer is:
72x2(−8x7+189x6−1944x5+11340x4−40824x3+91854x2−122472x+78732)+constant
The answer (Indefinite)
[src]
/
| 9 8 6 2 4
| 7 3 5 7 x 21*x 315*x 2187*x 5103*x
| x*(3 - x) dx = C - 1701*x - 567*x - 27*x - -- + ----- + ------ + ------- + -------
| 9 8 2 2 4
/
∫x(3−x)7dx=C−9x9+821x8−27x7+2315x6−567x5+45103x4−1701x3+22187x2
The graph
Use the examples entering the upper and lower limits of integration.