Mister Exam

Integral of x(3-x)⁷dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  3              
  /              
 |               
 |           7   
 |  x*(3 - x)  dx
 |               
/                
2                
23x(3x)7dx\int\limits_{2}^{3} x \left(3 - x\right)^{7}\, dx
Integral(x*(3 - x)^7, (x, 2, 3))
Detail solution
  1. Rewrite the integrand:

    x(3x)7=x8+21x7189x6+945x52835x4+5103x35103x2+2187xx \left(3 - x\right)^{7} = - x^{8} + 21 x^{7} - 189 x^{6} + 945 x^{5} - 2835 x^{4} + 5103 x^{3} - 5103 x^{2} + 2187 x

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      (x8)dx=x8dx\int \left(- x^{8}\right)\, dx = - \int x^{8}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x8dx=x99\int x^{8}\, dx = \frac{x^{9}}{9}

      So, the result is: x99- \frac{x^{9}}{9}

    1. The integral of a constant times a function is the constant times the integral of the function:

      21x7dx=21x7dx\int 21 x^{7}\, dx = 21 \int x^{7}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x7dx=x88\int x^{7}\, dx = \frac{x^{8}}{8}

      So, the result is: 21x88\frac{21 x^{8}}{8}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (189x6)dx=189x6dx\int \left(- 189 x^{6}\right)\, dx = - 189 \int x^{6}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x6dx=x77\int x^{6}\, dx = \frac{x^{7}}{7}

      So, the result is: 27x7- 27 x^{7}

    1. The integral of a constant times a function is the constant times the integral of the function:

      945x5dx=945x5dx\int 945 x^{5}\, dx = 945 \int x^{5}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x5dx=x66\int x^{5}\, dx = \frac{x^{6}}{6}

      So, the result is: 315x62\frac{315 x^{6}}{2}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (2835x4)dx=2835x4dx\int \left(- 2835 x^{4}\right)\, dx = - 2835 \int x^{4}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x4dx=x55\int x^{4}\, dx = \frac{x^{5}}{5}

      So, the result is: 567x5- 567 x^{5}

    1. The integral of a constant times a function is the constant times the integral of the function:

      5103x3dx=5103x3dx\int 5103 x^{3}\, dx = 5103 \int x^{3}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

      So, the result is: 5103x44\frac{5103 x^{4}}{4}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (5103x2)dx=5103x2dx\int \left(- 5103 x^{2}\right)\, dx = - 5103 \int x^{2}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

      So, the result is: 1701x3- 1701 x^{3}

    1. The integral of a constant times a function is the constant times the integral of the function:

      2187xdx=2187xdx\int 2187 x\, dx = 2187 \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: 2187x22\frac{2187 x^{2}}{2}

    The result is: x99+21x8827x7+315x62567x5+5103x441701x3+2187x22- \frac{x^{9}}{9} + \frac{21 x^{8}}{8} - 27 x^{7} + \frac{315 x^{6}}{2} - 567 x^{5} + \frac{5103 x^{4}}{4} - 1701 x^{3} + \frac{2187 x^{2}}{2}

  3. Now simplify:

    x2(8x7+189x61944x5+11340x440824x3+91854x2122472x+78732)72\frac{x^{2} \left(- 8 x^{7} + 189 x^{6} - 1944 x^{5} + 11340 x^{4} - 40824 x^{3} + 91854 x^{2} - 122472 x + 78732\right)}{72}

  4. Add the constant of integration:

    x2(8x7+189x61944x5+11340x440824x3+91854x2122472x+78732)72+constant\frac{x^{2} \left(- 8 x^{7} + 189 x^{6} - 1944 x^{5} + 11340 x^{4} - 40824 x^{3} + 91854 x^{2} - 122472 x + 78732\right)}{72}+ \mathrm{constant}


The answer is:

x2(8x7+189x61944x5+11340x440824x3+91854x2122472x+78732)72+constant\frac{x^{2} \left(- 8 x^{7} + 189 x^{6} - 1944 x^{5} + 11340 x^{4} - 40824 x^{3} + 91854 x^{2} - 122472 x + 78732\right)}{72}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                                                      
 |                                                 9       8        6         2         4
 |          7                3        5       7   x    21*x    315*x    2187*x    5103*x 
 | x*(3 - x)  dx = C - 1701*x  - 567*x  - 27*x  - -- + ----- + ------ + ------- + -------
 |                                                9      8       2         2         4   
/                                                                                        
x(3x)7dx=Cx99+21x8827x7+315x62567x5+5103x441701x3+2187x22\int x \left(3 - x\right)^{7}\, dx = C - \frac{x^{9}}{9} + \frac{21 x^{8}}{8} - 27 x^{7} + \frac{315 x^{6}}{2} - 567 x^{5} + \frac{5103 x^{4}}{4} - 1701 x^{3} + \frac{2187 x^{2}}{2}
The graph
2.003.002.102.202.302.402.502.602.702.802.900500
The answer [src]
19
--
72
1972\frac{19}{72}
=
=
19
--
72
1972\frac{19}{72}
19/72
Numerical answer [src]
0.263888888888889
0.263888888888889

    Use the examples entering the upper and lower limits of integration.