Mister Exam

Other calculators


x(tan^2(x))

Integral of x(tan^2(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |       2      
 |  x*tan (x) dx
 |              
/               
0               
$$\int\limits_{0}^{1} x \tan^{2}{\left(x \right)}\, dx$$
Integral(x*tan(x)^2, (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant is the constant times the variable of integration:

      The result is:

    Now evaluate the sub-integral.

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. Rewrite the integrand:

    2. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is .

        So, the result is:

      Now substitute back in:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                     
 |                     2                                
 |      2             x                                 
 | x*tan (x) dx = C + -- + x*(-x + tan(x)) + log(cos(x))
 |                    2                                 
/                                                       
$${{\left(\sin ^2\left(2\,x\right)+\cos ^2\left(2\,x\right)+2\,\cos \left(2\,x\right)+1\right)\,\log \left(\sin ^2\left(2\,x\right)+ \cos ^2\left(2\,x\right)+2\,\cos \left(2\,x\right)+1\right)-x^2\, \sin ^2\left(2\,x\right)+4\,x\,\sin \left(2\,x\right)-x^2\,\cos ^2 \left(2\,x\right)-2\,x^2\,\cos \left(2\,x\right)-x^2}\over{2\,\sin ^ 2\left(2\,x\right)+2\,\cos ^2\left(2\,x\right)+4\,\cos \left(2\,x \right)+2}}$$
The graph
The answer [src]
         /       2   \         
  1   log\1 + tan (1)/         
- - - ---------------- + tan(1)
  2          2                 
$${{\left(\sin ^22+\cos ^22+2\,\cos 2+1\right)\,\log \left(\sin ^22+ \cos ^22+2\,\cos 2+1\right)-\sin ^22+4\,\sin 2-\cos ^22-2\,\cos 2-1 }\over{2\,\sin ^22+2\,\cos ^22+4\,\cos 2+2}}-{{\log 4}\over{2}}$$
=
=
         /       2   \         
  1   log\1 + tan (1)/         
- - - ---------------- + tan(1)
  2          2                 
$$- \frac{\log{\left(1 + \tan^{2}{\left(1 \right)} \right)}}{2} - \frac{1}{2} + \tan{\left(1 \right)}$$
Numerical answer [src]
0.441781254268888
0.441781254268888
The graph
Integral of x(tan^2(x)) dx

    Use the examples entering the upper and lower limits of integration.