Integral of x^2sin^3x dx
The solution
The answer (Indefinite)
[src]
/
| 3 2 3 3 2 2
| 2 3 40*cos (x) 2*x *cos (x) 14*x*sin (x) 14*sin (x)*cos(x) 2 2 4*x*cos (x)*sin(x)
| x *sin (x) dx = C + ---------- - ------------ + ------------ + ----------------- - x *sin (x)*cos(x) + ------------------
| 27 3 9 9 3
/
∫x2sin3(x)dx=C−x2sin2(x)cos(x)−32x2cos3(x)+914xsin3(x)+34xsin(x)cos2(x)+914sin2(x)cos(x)+2740cos3(x)
The graph
3 3 2 2
40 14*sin (1) 22*cos (1) 4*cos (1)*sin(1) 5*sin (1)*cos(1)
- -- + ---------- + ---------- + ---------------- + ----------------
27 9 27 3 9
−2740+2722cos3(1)+95sin2(1)cos(1)+34sin(1)cos2(1)+914sin3(1)
=
3 3 2 2
40 14*sin (1) 22*cos (1) 4*cos (1)*sin(1) 5*sin (1)*cos(1)
- -- + ---------- + ---------- + ---------------- + ----------------
27 9 27 3 9
−2740+2722cos3(1)+95sin2(1)cos(1)+34sin(1)cos2(1)+914sin3(1)
-40/27 + 14*sin(1)^3/9 + 22*cos(1)^3/27 + 4*cos(1)^2*sin(1)/3 + 5*sin(1)^2*cos(1)/9
Use the examples entering the upper and lower limits of integration.