Mister Exam

Other calculators


x^2arcsinx

Integral of x^2arcsinx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |   2           
 |  x *asin(x) dx
 |               
/                
0                
$$\int\limits_{0}^{1} x^{2} \operatorname{asin}{\left(x \right)}\, dx$$
Integral(x^2*asin(x), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of is when :

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

      TrigSubstitutionRule(theta=_theta, func=sin(_theta), rewritten=sin(_theta)**3, substep=RewriteRule(rewritten=(1 - cos(_theta)**2)*sin(_theta), substep=AlternativeRule(alternatives=[URule(u_var=_u, u_func=cos(_theta), constant=1, substep=AddRule(substeps=[PowerRule(base=_u, exp=2, context=_u**2, symbol=_u), ConstantRule(constant=-1, context=-1, symbol=_u)], context=_u**2 - 1, symbol=_u), context=(1 - cos(_theta)**2)*sin(_theta), symbol=_theta), RewriteRule(rewritten=-sin(_theta)*cos(_theta)**2 + sin(_theta), substep=AddRule(substeps=[ConstantTimesRule(constant=-1, other=sin(_theta)*cos(_theta)**2, substep=URule(u_var=_u, u_func=cos(_theta), constant=-1, substep=ConstantTimesRule(constant=-1, other=_u**2, substep=PowerRule(base=_u, exp=2, context=_u**2, symbol=_u), context=_u**2, symbol=_u), context=sin(_theta)*cos(_theta)**2, symbol=_theta), context=-sin(_theta)*cos(_theta)**2, symbol=_theta), TrigRule(func='sin', arg=_theta, context=sin(_theta), symbol=_theta)], context=-sin(_theta)*cos(_theta)**2 + sin(_theta), symbol=_theta), context=(1 - cos(_theta)**2)*sin(_theta), symbol=_theta), RewriteRule(rewritten=-sin(_theta)*cos(_theta)**2 + sin(_theta), substep=AddRule(substeps=[ConstantTimesRule(constant=-1, other=sin(_theta)*cos(_theta)**2, substep=URule(u_var=_u, u_func=cos(_theta), constant=-1, substep=ConstantTimesRule(constant=-1, other=_u**2, substep=PowerRule(base=_u, exp=2, context=_u**2, symbol=_u), context=_u**2, symbol=_u), context=sin(_theta)*cos(_theta)**2, symbol=_theta), context=-sin(_theta)*cos(_theta)**2, symbol=_theta), TrigRule(func='sin', arg=_theta, context=sin(_theta), symbol=_theta)], context=-sin(_theta)*cos(_theta)**2 + sin(_theta), symbol=_theta), context=(1 - cos(_theta)**2)*sin(_theta), symbol=_theta)], context=(1 - cos(_theta)**2)*sin(_theta), symbol=_theta), context=sin(_theta)**3, symbol=_theta), restriction=(x > -1) & (x < 1), context=x**3/sqrt(1 - x**2), symbol=x)

    So, the result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                       /                        3/2                                     
                       |     ________   /     2\                                        
  /                    <    /      2    \1 - x /                                        
 |                     |- \/  1 - x   + -----------  for And(x > -1, x < 1)    3        
 |  2                  \                     3                                x *asin(x)
 | x *asin(x) dx = C - ---------------------------------------------------- + ----------
 |                                              3                                 3     
/                                                                                       
$$\int x^{2} \operatorname{asin}{\left(x \right)}\, dx = C + \frac{x^{3} \operatorname{asin}{\left(x \right)}}{3} - \frac{\begin{cases} \frac{\left(1 - x^{2}\right)^{\frac{3}{2}}}{3} - \sqrt{1 - x^{2}} & \text{for}\: x > -1 \wedge x < 1 \end{cases}}{3}$$
The graph
The answer [src]
  2   pi
- - + --
  9   6 
$$- \frac{2}{9} + \frac{\pi}{6}$$
=
=
  2   pi
- - + --
  9   6 
$$- \frac{2}{9} + \frac{\pi}{6}$$
-2/9 + pi/6
Numerical answer [src]
0.301376553376077
0.301376553376077
The graph
Integral of x^2arcsinx dx

    Use the examples entering the upper and lower limits of integration.