1 / | | 2 | x *asin(x) dx | / 0
Integral(x^2*asin(x), (x, 0, 1))
Use integration by parts:
Let and let .
Then .
To find :
The integral of is when :
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
TrigSubstitutionRule(theta=_theta, func=sin(_theta), rewritten=sin(_theta)**3, substep=RewriteRule(rewritten=(1 - cos(_theta)**2)*sin(_theta), substep=AlternativeRule(alternatives=[URule(u_var=_u, u_func=cos(_theta), constant=1, substep=AddRule(substeps=[PowerRule(base=_u, exp=2, context=_u**2, symbol=_u), ConstantRule(constant=-1, context=-1, symbol=_u)], context=_u**2 - 1, symbol=_u), context=(1 - cos(_theta)**2)*sin(_theta), symbol=_theta), RewriteRule(rewritten=-sin(_theta)*cos(_theta)**2 + sin(_theta), substep=AddRule(substeps=[ConstantTimesRule(constant=-1, other=sin(_theta)*cos(_theta)**2, substep=URule(u_var=_u, u_func=cos(_theta), constant=-1, substep=ConstantTimesRule(constant=-1, other=_u**2, substep=PowerRule(base=_u, exp=2, context=_u**2, symbol=_u), context=_u**2, symbol=_u), context=sin(_theta)*cos(_theta)**2, symbol=_theta), context=-sin(_theta)*cos(_theta)**2, symbol=_theta), TrigRule(func='sin', arg=_theta, context=sin(_theta), symbol=_theta)], context=-sin(_theta)*cos(_theta)**2 + sin(_theta), symbol=_theta), context=(1 - cos(_theta)**2)*sin(_theta), symbol=_theta), RewriteRule(rewritten=-sin(_theta)*cos(_theta)**2 + sin(_theta), substep=AddRule(substeps=[ConstantTimesRule(constant=-1, other=sin(_theta)*cos(_theta)**2, substep=URule(u_var=_u, u_func=cos(_theta), constant=-1, substep=ConstantTimesRule(constant=-1, other=_u**2, substep=PowerRule(base=_u, exp=2, context=_u**2, symbol=_u), context=_u**2, symbol=_u), context=sin(_theta)*cos(_theta)**2, symbol=_theta), context=-sin(_theta)*cos(_theta)**2, symbol=_theta), TrigRule(func='sin', arg=_theta, context=sin(_theta), symbol=_theta)], context=-sin(_theta)*cos(_theta)**2 + sin(_theta), symbol=_theta), context=(1 - cos(_theta)**2)*sin(_theta), symbol=_theta)], context=(1 - cos(_theta)**2)*sin(_theta), symbol=_theta), context=sin(_theta)**3, symbol=_theta), restriction=(x > -1) & (x < 1), context=x**3/sqrt(1 - x**2), symbol=x)
So, the result is:
Now simplify:
Add the constant of integration:
The answer is:
/ 3/2 | ________ / 2\ / < / 2 \1 - x / | |- \/ 1 - x + ----------- for And(x > -1, x < 1) 3 | 2 \ 3 x *asin(x) | x *asin(x) dx = C - ---------------------------------------------------- + ---------- | 3 3 /
2 pi - - + -- 9 6
=
2 pi - - + -- 9 6
-2/9 + pi/6
Use the examples entering the upper and lower limits of integration.