Mister Exam

Other calculators

Integral of (xsinx)/(1+(cosx)^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi               
  /               
 |                
 |    x*sin(x)    
 |  ----------- dx
 |         2      
 |  1 + cos (x)   
 |                
/                 
0                 
$$\int\limits_{0}^{\pi} \frac{x \sin{\left(x \right)}}{\cos^{2}{\left(x \right)} + 1}\, dx$$
Integral(x*sin(x)/(1 + cos(x)^2), (x, 0, pi))
The answer (Indefinite) [src]
  /                       /              
 |                       |               
 |   x*sin(x)            |   x*sin(x)    
 | ----------- dx = C +  | ----------- dx
 |        2              |        2      
 | 1 + cos (x)           | 1 + cos (x)   
 |                       |               
/                       /                
$$\int \frac{x \sin{\left(x \right)}}{\cos^{2}{\left(x \right)} + 1}\, dx = C + \int \frac{x \sin{\left(x \right)}}{\cos^{2}{\left(x \right)} + 1}\, dx$$
The answer [src]
 pi               
  /               
 |                
 |    x*sin(x)    
 |  ----------- dx
 |         2      
 |  1 + cos (x)   
 |                
/                 
0                 
$$\int\limits_{0}^{\pi} \frac{x \sin{\left(x \right)}}{\cos^{2}{\left(x \right)} + 1}\, dx$$
=
=
 pi               
  /               
 |                
 |    x*sin(x)    
 |  ----------- dx
 |         2      
 |  1 + cos (x)   
 |                
/                 
0                 
$$\int\limits_{0}^{\pi} \frac{x \sin{\left(x \right)}}{\cos^{2}{\left(x \right)} + 1}\, dx$$
Numerical answer [src]
2.46740110027234
2.46740110027234

    Use the examples entering the upper and lower limits of integration.