Mister Exam

Other calculators


xsinx/cos^3x

Integral of xsinx/cos^3x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi            
 --            
 4             
  /            
 |             
 |  x*sin(x)   
 |  -------- dx
 |     3       
 |  cos (x)    
 |             
/              
0              
$$\int\limits_{0}^{\frac{\pi}{4}} \frac{x \sin{\left(x \right)}}{\cos^{3}{\left(x \right)}}\, dx$$
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      Now substitute back in:

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Don't know the steps in finding this integral.

      But the integral is

    So, the result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                      
 |                                       
 | x*sin(x)              x        sin(x) 
 | -------- dx = C + --------- - --------
 |    3                   2      2*cos(x)
 | cos (x)           2*cos (x)           
 |                                       
/                                        
$${{\left(2\,x\,\sin \left(2\,x\right)-\cos \left(2\,x\right)-1 \right)\,\sin \left(4\,x\right)+\left(\sin \left(2\,x\right)+2\,x\, \cos \left(2\,x\right)\right)\,\cos \left(4\,x\right)+4\,x\,\sin ^2 \left(2\,x\right)-\sin \left(2\,x\right)+4\,x\,\cos ^2\left(2\,x \right)+2\,x\,\cos \left(2\,x\right)}\over{\sin ^2\left(4\,x\right)+ 4\,\sin \left(2\,x\right)\,\sin \left(4\,x\right)+\cos ^2\left(4\,x \right)+\left(4\,\cos \left(2\,x\right)+2\right)\,\cos \left(4\,x \right)+4\,\sin ^2\left(2\,x\right)+4\,\cos ^2\left(2\,x\right)+4\, \cos \left(2\,x\right)+1}}$$
The graph
The answer [src]
                                                                   3                                                                                      2                                           4            
                /       ___\                           /       ___\                                                                           /       ___\                                /       ___\             
              2*\-1 + \/ 2 /                         2*\-1 + \/ 2 /                                   pi                                   pi*\-1 + \/ 2 /                             pi*\-1 + \/ 2 /             
- ------------------------------------- + ------------------------------------- + ----------------------------------------- + ----------------------------------------- + -----------------------------------------
                    2                 4                     2                 4     /                  2                 4\     /                  2                 4\     /                  2                 4\
        /       ___\      /       ___\          /       ___\      /       ___\      |      /       ___\      /       ___\ |     |      /       ___\      /       ___\ |     |      /       ___\      /       ___\ |
  2 - 4*\-1 + \/ 2 /  + 2*\-1 + \/ 2 /    2 - 4*\-1 + \/ 2 /  + 2*\-1 + \/ 2 /    4*\2 - 4*\-1 + \/ 2 /  + 2*\-1 + \/ 2 / /   2*\2 - 4*\-1 + \/ 2 /  + 2*\-1 + \/ 2 / /   4*\2 - 4*\-1 + \/ 2 /  + 2*\-1 + \/ 2 / /
$$- \frac{2 \left(-1 + \sqrt{2}\right)}{- 4 \left(-1 + \sqrt{2}\right)^{2} + 2 \left(-1 + \sqrt{2}\right)^{4} + 2} + \frac{\pi \left(-1 + \sqrt{2}\right)^{4}}{4 \left(- 4 \left(-1 + \sqrt{2}\right)^{2} + 2 \left(-1 + \sqrt{2}\right)^{4} + 2\right)} + \frac{2 \left(-1 + \sqrt{2}\right)^{3}}{- 4 \left(-1 + \sqrt{2}\right)^{2} + 2 \left(-1 + \sqrt{2}\right)^{4} + 2} + \frac{\pi \left(-1 + \sqrt{2}\right)^{2}}{2 \left(- 4 \left(-1 + \sqrt{2}\right)^{2} + 2 \left(-1 + \sqrt{2}\right)^{4} + 2\right)} + \frac{\pi}{4 \left(- 4 \left(-1 + \sqrt{2}\right)^{2} + 2 \left(-1 + \sqrt{2}\right)^{4} + 2\right)}$$
=
=
                                                                   3                                                                                      2                                           4            
                /       ___\                           /       ___\                                                                           /       ___\                                /       ___\             
              2*\-1 + \/ 2 /                         2*\-1 + \/ 2 /                                   pi                                   pi*\-1 + \/ 2 /                             pi*\-1 + \/ 2 /             
- ------------------------------------- + ------------------------------------- + ----------------------------------------- + ----------------------------------------- + -----------------------------------------
                    2                 4                     2                 4     /                  2                 4\     /                  2                 4\     /                  2                 4\
        /       ___\      /       ___\          /       ___\      /       ___\      |      /       ___\      /       ___\ |     |      /       ___\      /       ___\ |     |      /       ___\      /       ___\ |
  2 - 4*\-1 + \/ 2 /  + 2*\-1 + \/ 2 /    2 - 4*\-1 + \/ 2 /  + 2*\-1 + \/ 2 /    4*\2 - 4*\-1 + \/ 2 /  + 2*\-1 + \/ 2 / /   2*\2 - 4*\-1 + \/ 2 /  + 2*\-1 + \/ 2 / /   4*\2 - 4*\-1 + \/ 2 /  + 2*\-1 + \/ 2 / /
$$- \frac{2 \left(-1 + \sqrt{2}\right)}{- 4 \left(-1 + \sqrt{2}\right)^{2} + 2 \left(-1 + \sqrt{2}\right)^{4} + 2} + \frac{\pi \left(-1 + \sqrt{2}\right)^{4}}{4 \left(- 4 \left(-1 + \sqrt{2}\right)^{2} + 2 \left(-1 + \sqrt{2}\right)^{4} + 2\right)} + \frac{2 \left(-1 + \sqrt{2}\right)^{3}}{- 4 \left(-1 + \sqrt{2}\right)^{2} + 2 \left(-1 + \sqrt{2}\right)^{4} + 2} + \frac{\pi \left(-1 + \sqrt{2}\right)^{2}}{2 \left(- 4 \left(-1 + \sqrt{2}\right)^{2} + 2 \left(-1 + \sqrt{2}\right)^{4} + 2\right)} + \frac{\pi}{4 \left(- 4 \left(-1 + \sqrt{2}\right)^{2} + 2 \left(-1 + \sqrt{2}\right)^{4} + 2\right)}$$
Numerical answer [src]
0.285398163397448
0.285398163397448
The graph
Integral of xsinx/cos^3x dx

    Use the examples entering the upper and lower limits of integration.