Mister Exam

Integral of x(sin²(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |       2      
 |  x*sin (x) dx
 |              
/               
0               
$$\int\limits_{0}^{1} x \sin^{2}{\left(x \right)}\, dx$$
Integral(x*sin(x)^2, (x, 0, 1))
The answer (Indefinite) [src]
  /                                                                      
 |                       2       2    2       2    2                     
 |      2             sin (x)   x *cos (x)   x *sin (x)   x*cos(x)*sin(x)
 | x*sin (x) dx = C + ------- + ---------- + ---------- - ---------------
 |                       4          4            4               2       
/                                                                        
$$\int x \sin^{2}{\left(x \right)}\, dx = C + \frac{x^{2} \sin^{2}{\left(x \right)}}{4} + \frac{x^{2} \cos^{2}{\left(x \right)}}{4} - \frac{x \sin{\left(x \right)} \cos{\left(x \right)}}{2} + \frac{\sin^{2}{\left(x \right)}}{4}$$
The graph
The answer [src]
   2         2                   
sin (1)   cos (1)   cos(1)*sin(1)
------- + ------- - -------------
   2         4            2      
$$- \frac{\sin{\left(1 \right)} \cos{\left(1 \right)}}{2} + \frac{\cos^{2}{\left(1 \right)}}{4} + \frac{\sin^{2}{\left(1 \right)}}{2}$$
=
=
   2         2                   
sin (1)   cos (1)   cos(1)*sin(1)
------- + ------- - -------------
   2         4            2      
$$- \frac{\sin{\left(1 \right)} \cos{\left(1 \right)}}{2} + \frac{\cos^{2}{\left(1 \right)}}{4} + \frac{\sin^{2}{\left(1 \right)}}{2}$$
sin(1)^2/2 + cos(1)^2/4 - cos(1)*sin(1)/2
Numerical answer [src]
0.199693997861972
0.199693997861972
The graph
Integral of x(sin²(x)) dx

    Use the examples entering the upper and lower limits of integration.