Mister Exam

Other calculators


(x+2)*e^(-x)

Integral of (x+2)*e^(-x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |           -x   
 |  (x + 2)*e   dx
 |                
/                 
0                 
01(x+2)exdx\int\limits_{0}^{1} \left(x + 2\right) e^{- x}\, dx
Integral((x + 2)/E^x, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(x)=x+2u{\left(x \right)} = x + 2 and let dv(x)=ex\operatorname{dv}{\left(x \right)} = e^{- x}.

      Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

      To find v(x)v{\left(x \right)}:

      1. There are multiple ways to do this integral.

        Method #1

        1. Let u=xu = - x.

          Then let du=dxdu = - dx and substitute du- du:

          eudu\int e^{u}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (eu)du=eudu\int \left(- e^{u}\right)\, du = - \int e^{u}\, du

            1. The integral of the exponential function is itself.

              eudu=eu\int e^{u}\, du = e^{u}

            So, the result is: eu- e^{u}

          Now substitute uu back in:

          ex- e^{- x}

        Method #2

        1. Let u=exu = e^{- x}.

          Then let du=exdxdu = - e^{- x} dx and substitute du- du:

          1du\int 1\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (1)du=1du\int \left(-1\right)\, du = - \int 1\, du

            1. The integral of a constant is the constant times the variable of integration:

              1du=u\int 1\, du = u

            So, the result is: u- u

          Now substitute uu back in:

          ex- e^{- x}

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      (ex)dx=exdx\int \left(- e^{- x}\right)\, dx = - \int e^{- x}\, dx

      1. Let u=xu = - x.

        Then let du=dxdu = - dx and substitute du- du:

        eudu\int e^{u}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          (eu)du=eudu\int \left(- e^{u}\right)\, du = - \int e^{u}\, du

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          So, the result is: eu- e^{u}

        Now substitute uu back in:

        ex- e^{- x}

      So, the result is: exe^{- x}

    Method #2

    1. Rewrite the integrand:

      (x+2)ex=xex+2ex\left(x + 2\right) e^{- x} = x e^{- x} + 2 e^{- x}

    2. Integrate term-by-term:

      1. Let u=xu = - x.

        Then let du=dxdu = - dx and substitute dudu:

        ueudu\int u e^{u}\, du

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(u)=uu{\left(u \right)} = u and let dv(u)=eu\operatorname{dv}{\left(u \right)} = e^{u}.

          Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

          To find v(u)v{\left(u \right)}:

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          Now evaluate the sub-integral.

        2. The integral of the exponential function is itself.

          eudu=eu\int e^{u}\, du = e^{u}

        Now substitute uu back in:

        xexex- x e^{- x} - e^{- x}

      1. The integral of a constant times a function is the constant times the integral of the function:

        2exdx=2exdx\int 2 e^{- x}\, dx = 2 \int e^{- x}\, dx

        1. Let u=xu = - x.

          Then let du=dxdu = - dx and substitute du- du:

          eudu\int e^{u}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (eu)du=eudu\int \left(- e^{u}\right)\, du = - \int e^{u}\, du

            1. The integral of the exponential function is itself.

              eudu=eu\int e^{u}\, du = e^{u}

            So, the result is: eu- e^{u}

          Now substitute uu back in:

          ex- e^{- x}

        So, the result is: 2ex- 2 e^{- x}

      The result is: xex3ex- x e^{- x} - 3 e^{- x}

  2. Now simplify:

    (x3)ex\left(- x - 3\right) e^{- x}

  3. Add the constant of integration:

    (x3)ex+constant\left(- x - 3\right) e^{- x}+ \mathrm{constant}


The answer is:

(x3)ex+constant\left(- x - 3\right) e^{- x}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                      
 |                                       
 |          -x           -x            -x
 | (x + 2)*e   dx = C - e   - (2 + x)*e  
 |                                       
/                                        
(x+2)exdx=C(x+2)exex\int \left(x + 2\right) e^{- x}\, dx = C - \left(x + 2\right) e^{- x} - e^{- x}
The graph
0.001.000.100.200.300.400.500.600.700.800.905-5
The answer [src]
       -1
3 - 4*e  
34e3 - \frac{4}{e}
=
=
       -1
3 - 4*e  
34e3 - \frac{4}{e}
Numerical answer [src]
1.52848223531423
1.52848223531423
The graph
Integral of (x+2)*e^(-x) dx

    Use the examples entering the upper and lower limits of integration.