Mister Exam

Other calculators

Integral of (x+3)/(3x^2+4x-1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |      x + 3        
 |  -------------- dx
 |     2             
 |  3*x  + 4*x - 1   
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \frac{x + 3}{\left(3 x^{2} + 4 x\right) - 1}\, dx$$
Integral((x + 3)/(3*x^2 + 4*x - 1), (x, 0, 1))
The answer (Indefinite) [src]
                             //            /    ___          \                       \                       
                             ||   ___      |3*\/ 7 *(2/3 + x)|                       |                       
                             ||-\/ 7 *acoth|-----------------|                       |                       
  /                          ||            \        7        /                2      |                       
 |                           ||--------------------------------  for (2/3 + x)  > 7/9|      /        2      \
 |     x + 3                 ||               21                                     |   log\-1 + 3*x  + 4*x/
 | -------------- dx = C + 7*|<                                                      | + --------------------
 |    2                      ||            /    ___          \                       |            6          
 | 3*x  + 4*x - 1            ||   ___      |3*\/ 7 *(2/3 + x)|                       |                       
 |                           ||-\/ 7 *atanh|-----------------|                       |                       
/                            ||            \        7        /                2      |                       
                             ||--------------------------------  for (2/3 + x)  < 7/9|                       
                             \\               21                                     /                       
$$\int \frac{x + 3}{\left(3 x^{2} + 4 x\right) - 1}\, dx = C + 7 \left(\begin{cases} - \frac{\sqrt{7} \operatorname{acoth}{\left(\frac{3 \sqrt{7} \left(x + \frac{2}{3}\right)}{7} \right)}}{21} & \text{for}\: \left(x + \frac{2}{3}\right)^{2} > \frac{7}{9} \\- \frac{\sqrt{7} \operatorname{atanh}{\left(\frac{3 \sqrt{7} \left(x + \frac{2}{3}\right)}{7} \right)}}{21} & \text{for}\: \left(x + \frac{2}{3}\right)^{2} < \frac{7}{9} \end{cases}\right) + \frac{\log{\left(3 x^{2} + 4 x - 1 \right)}}{6}$$
The graph
The answer [src]
nan
$$\text{NaN}$$
=
=
nan
$$\text{NaN}$$
nan
Numerical answer [src]
-0.394409684915544
-0.394409684915544

    Use the examples entering the upper and lower limits of integration.