Mister Exam

Other calculators


(x+6)^2

Integral of (x+6)^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |         2   
 |  (x + 6)  dx
 |             
/              
0              
01(x+6)2dx\int\limits_{0}^{1} \left(x + 6\right)^{2}\, dx
Integral((x + 6)^2, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=x+6u = x + 6.

      Then let du=dxdu = dx and substitute dudu:

      u2du\int u^{2}\, du

      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

        u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

      Now substitute uu back in:

      (x+6)33\frac{\left(x + 6\right)^{3}}{3}

    Method #2

    1. Rewrite the integrand:

      (x+6)2=x2+12x+36\left(x + 6\right)^{2} = x^{2} + 12 x + 36

    2. Integrate term-by-term:

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

      1. The integral of a constant times a function is the constant times the integral of the function:

        12xdx=12xdx\int 12 x\, dx = 12 \int x\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        So, the result is: 6x26 x^{2}

      1. The integral of a constant is the constant times the variable of integration:

        36dx=36x\int 36\, dx = 36 x

      The result is: x33+6x2+36x\frac{x^{3}}{3} + 6 x^{2} + 36 x

  2. Now simplify:

    (x+6)33\frac{\left(x + 6\right)^{3}}{3}

  3. Add the constant of integration:

    (x+6)33+constant\frac{\left(x + 6\right)^{3}}{3}+ \mathrm{constant}


The answer is:

(x+6)33+constant\frac{\left(x + 6\right)^{3}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                          
 |                          3
 |        2          (x + 6) 
 | (x + 6)  dx = C + --------
 |                      3    
/                            
(x+6)2dx=C+(x+6)33\int \left(x + 6\right)^{2}\, dx = C + \frac{\left(x + 6\right)^{3}}{3}
The graph
0.001.000.100.200.300.400.500.600.700.800.90050
The answer [src]
127/3
1273\frac{127}{3}
=
=
127/3
1273\frac{127}{3}
127/3
Numerical answer [src]
42.3333333333333
42.3333333333333
The graph
Integral of (x+6)^2 dx

    Use the examples entering the upper and lower limits of integration.