Mister Exam

Other calculators


(x+1)(x^2-2)

Integral of (x+1)(x^2-2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0                    
  /                    
 |                     
 |          / 2    \   
 |  (x + 1)*\x  - 2/ dx
 |                     
/                      
-1                     
$$\int\limits_{-1}^{0} \left(x + 1\right) \left(x^{2} - 2\right)\, dx$$
Integral((x + 1)*(x^2 - 2), (x, -1, 0))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of is when :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                            
 |                                       3    4
 |         / 2    \           2         x    x 
 | (x + 1)*\x  - 2/ dx = C - x  - 2*x + -- + --
 |                                      3    4 
/                                              
$$\int \left(x + 1\right) \left(x^{2} - 2\right)\, dx = C + \frac{x^{4}}{4} + \frac{x^{3}}{3} - x^{2} - 2 x$$
The graph
The answer [src]
-11 
----
 12 
$$- \frac{11}{12}$$
=
=
-11 
----
 12 
$$- \frac{11}{12}$$
-11/12
Numerical answer [src]
-0.916666666666667
-0.916666666666667
The graph
Integral of (x+1)(x^2-2) dx

    Use the examples entering the upper and lower limits of integration.