Mister Exam

Other calculators


(x+1)^(1/2)

Integral of (x+1)^(1/2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |    _______   
 |  \/ x + 1  dx
 |              
/               
0               
$$\int\limits_{0}^{1} \sqrt{x + 1}\, dx$$
Integral(sqrt(x + 1), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of is when :

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               
 |                             3/2
 |   _______          2*(x + 1)   
 | \/ x + 1  dx = C + ------------
 |                         3      
/                                 
$$\int \sqrt{x + 1}\, dx = C + \frac{2 \left(x + 1\right)^{\frac{3}{2}}}{3}$$
The graph
The answer [src]
          ___
  2   4*\/ 2 
- - + -------
  3      3   
$$- \frac{2}{3} + \frac{4 \sqrt{2}}{3}$$
=
=
          ___
  2   4*\/ 2 
- - + -------
  3      3   
$$- \frac{2}{3} + \frac{4 \sqrt{2}}{3}$$
-2/3 + 4*sqrt(2)/3
Numerical answer [src]
1.21895141649746
1.21895141649746
The graph
Integral of (x+1)^(1/2) dx

    Use the examples entering the upper and lower limits of integration.