1 / | | log(x) | (x + 1)*------ dx | log(2) | / 0
Integral((x + 1)*(log(x)/log(2)), (x, 0, 1))
There are multiple ways to do this integral.
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
Integrate term-by-term:
Use integration by parts:
Let and let .
Then .
To find :
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
So, the result is:
Use integration by parts:
Let and let .
Then .
To find :
The integral of the exponential function is itself.
Now evaluate the sub-integral.
The integral of the exponential function is itself.
The result is:
So, the result is:
Now substitute back in:
Rewrite the integrand:
The integral of a constant times a function is the constant times the integral of the function:
Integrate term-by-term:
Let .
Then let and substitute :
Use integration by parts:
Let and let .
Then .
To find :
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
So, the result is:
Now substitute back in:
Use integration by parts:
Let and let .
Then .
To find :
The integral of a constant is the constant times the variable of integration:
Now evaluate the sub-integral.
The integral of a constant is the constant times the variable of integration:
The result is:
So, the result is:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
Use integration by parts:
Let and let .
Then .
To find :
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Use integration by parts:
Let and let .
Then .
To find :
The integral of a constant is the constant times the variable of integration:
Now evaluate the sub-integral.
The integral of a constant is the constant times the variable of integration:
So, the result is:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
2 2 / x x *log(x) | -x - -- + x*log(x) + --------- | log(x) 4 2 | (x + 1)*------ dx = C + ------------------------------ | log(2) log(2) | /
-5 -------- 4*log(2)
=
-5 -------- 4*log(2)
-5/(4*log(2))
Use the examples entering the upper and lower limits of integration.