Mister Exam

Other calculators


(x+1)/(4x^2+8x+7)

Integral of (x+1)/(4x^2+8x+7) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |      x + 1        
 |  -------------- dx
 |     2             
 |  4*x  + 8*x + 7   
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \frac{x + 1}{\left(4 x^{2} + 8 x\right) + 7}\, dx$$
Integral((x + 1)/(4*x^2 + 8*x + 7), (x, 0, 1))
Detail solution
We have the integral:
  /                 
 |                  
 |     x + 1        
 | -------------- dx
 |    2             
 | 4*x  + 8*x + 7   
 |                  
/                   
Rewrite the integrand
                 /  4*2*x + 8   \                              
                 |--------------|               /0\            
                 |   2          |               |-|            
    x + 1        \4*x  + 8*x + 7/               \3/            
-------------- = ---------------- + ---------------------------
   2                    8                                 2    
4*x  + 8*x + 7                      /     ___         ___\     
                                    |-2*\/ 3      2*\/ 3 |     
                                    |--------*x - -------|  + 1
                                    \   3            3   /     
or
  /                   
 |                    
 |     x + 1          
 | -------------- dx  
 |    2              =
 | 4*x  + 8*x + 7     
 |                    
/                     
  
  /                 
 |                  
 |   4*2*x + 8      
 | -------------- dx
 |    2             
 | 4*x  + 8*x + 7   
 |                  
/                   
--------------------
         8          
In the integral
  /                 
 |                  
 |   4*2*x + 8      
 | -------------- dx
 |    2             
 | 4*x  + 8*x + 7   
 |                  
/                   
--------------------
         8          
do replacement
       2      
u = 4*x  + 8*x
then
the integral =
  /                     
 |                      
 |   1                  
 | ----- du             
 | 7 + u                
 |                      
/             log(7 + u)
----------- = ----------
     8            8     
do backward replacement
  /                                       
 |                                        
 |   4*2*x + 8                            
 | -------------- dx                      
 |    2                                   
 | 4*x  + 8*x + 7                         
 |                        /       2      \
/                      log\7 + 4*x  + 8*x/
-------------------- = -------------------
         8                      8         
In the integral
0
do replacement
          ___         ___
      2*\/ 3    2*x*\/ 3 
v = - ------- - ---------
         3          3    
then
the integral =
True
do backward replacement
True
Solution is:
       /       2      \
    log\7 + 4*x  + 8*x/
C + -------------------
             8         
The answer (Indefinite) [src]
  /                                           
 |                            /   2          \
 |     x + 1               log\4*x  + 8*x + 7/
 | -------------- dx = C + -------------------
 |    2                             8         
 | 4*x  + 8*x + 7                             
 |                                            
/                                             
$$\int \frac{x + 1}{\left(4 x^{2} + 8 x\right) + 7}\, dx = C + \frac{\log{\left(\left(4 x^{2} + 8 x\right) + 7 \right)}}{8}$$
The graph
The answer [src]
  log(7)   log(19)
- ------ + -------
    8         8   
$$- \frac{\log{\left(7 \right)}}{8} + \frac{\log{\left(19 \right)}}{8}$$
=
=
  log(7)   log(19)
- ------ + -------
    8         8   
$$- \frac{\log{\left(7 \right)}}{8} + \frac{\log{\left(19 \right)}}{8}$$
-log(7)/8 + log(19)/8
Numerical answer [src]
0.124816103763891
0.124816103763891
The graph
Integral of (x+1)/(4x^2+8x+7) dx

    Use the examples entering the upper and lower limits of integration.