1 / | | x + 1 | -------------- dx | 2 | 4*x + 8*x + 7 | / 0
Integral((x + 1)/(4*x^2 + 8*x + 7), (x, 0, 1))
/ | | x + 1 | -------------- dx | 2 | 4*x + 8*x + 7 | /
/ 4*2*x + 8 \
|--------------| /0\
| 2 | |-|
x + 1 \4*x + 8*x + 7/ \3/
-------------- = ---------------- + ---------------------------
2 8 2
4*x + 8*x + 7 / ___ ___\
|-2*\/ 3 2*\/ 3 |
|--------*x - -------| + 1
\ 3 3 / / | | x + 1 | -------------- dx | 2 = | 4*x + 8*x + 7 | /
/
|
| 4*2*x + 8
| -------------- dx
| 2
| 4*x + 8*x + 7
|
/
--------------------
8 /
|
| 4*2*x + 8
| -------------- dx
| 2
| 4*x + 8*x + 7
|
/
--------------------
8 2 u = 4*x + 8*x
/
|
| 1
| ----- du
| 7 + u
|
/ log(7 + u)
----------- = ----------
8 8 /
|
| 4*2*x + 8
| -------------- dx
| 2
| 4*x + 8*x + 7
| / 2 \
/ log\7 + 4*x + 8*x/
-------------------- = -------------------
8 8 0
___ ___
2*\/ 3 2*x*\/ 3
v = - ------- - ---------
3 3 True
True
/ 2 \
log\7 + 4*x + 8*x/
C + -------------------
8 / | / 2 \ | x + 1 log\4*x + 8*x + 7/ | -------------- dx = C + ------------------- | 2 8 | 4*x + 8*x + 7 | /
log(7) log(19)
- ------ + -------
8 8
=
log(7) log(19)
- ------ + -------
8 8
-log(7)/8 + log(19)/8
Use the examples entering the upper and lower limits of integration.