1 / | | x + 1 | -------------- dx | 2 | 4*x + 8*x + 7 | / 0
Integral((x + 1)/(4*x^2 + 8*x + 7), (x, 0, 1))
/ | | x + 1 | -------------- dx | 2 | 4*x + 8*x + 7 | /
/ 4*2*x + 8 \ |--------------| /0\ | 2 | |-| x + 1 \4*x + 8*x + 7/ \3/ -------------- = ---------------- + --------------------------- 2 8 2 4*x + 8*x + 7 / ___ ___\ |-2*\/ 3 2*\/ 3 | |--------*x - -------| + 1 \ 3 3 /
/ | | x + 1 | -------------- dx | 2 = | 4*x + 8*x + 7 | /
/ | | 4*2*x + 8 | -------------- dx | 2 | 4*x + 8*x + 7 | / -------------------- 8
/ | | 4*2*x + 8 | -------------- dx | 2 | 4*x + 8*x + 7 | / -------------------- 8
2 u = 4*x + 8*x
/ | | 1 | ----- du | 7 + u | / log(7 + u) ----------- = ---------- 8 8
/ | | 4*2*x + 8 | -------------- dx | 2 | 4*x + 8*x + 7 | / 2 \ / log\7 + 4*x + 8*x/ -------------------- = ------------------- 8 8
0
___ ___ 2*\/ 3 2*x*\/ 3 v = - ------- - --------- 3 3
True
True
/ 2 \ log\7 + 4*x + 8*x/ C + ------------------- 8
/ | / 2 \ | x + 1 log\4*x + 8*x + 7/ | -------------- dx = C + ------------------- | 2 8 | 4*x + 8*x + 7 | /
log(7) log(19) - ------ + ------- 8 8
=
log(7) log(19) - ------ + ------- 8 8
-log(7)/8 + log(19)/8
Use the examples entering the upper and lower limits of integration.