Mister Exam

Other calculators

Integral of (x+1/2x+1)-lnx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                        
  /                        
 |                         
 |  /    x             \   
 |  |x + - + 1 - log(x)| dx
 |  \    2             /   
 |                         
/                          
 -1                        
e                          
$$\int\limits_{e^{-1}}^{1} \left(\left(\left(\frac{x}{2} + x\right) + 1\right) - \log{\left(x \right)}\right)\, dx$$
Integral(x + x/2 + 1 - log(x), (x, exp(-1), 1))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        1. The integral of is when :

        The result is:

      1. The integral of a constant is the constant times the variable of integration:

      The result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Use integration by parts:

        Let and let .

        Then .

        To find :

        1. The integral of a constant is the constant times the variable of integration:

        Now evaluate the sub-integral.

      2. The integral of a constant is the constant times the variable of integration:

      So, the result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                   
 |                                        2           
 | /    x             \                3*x            
 | |x + - + 1 - log(x)| dx = C + 2*x + ---- - x*log(x)
 | \    2             /                 4             
 |                                                    
/                                                     
$$\int \left(\left(\left(\frac{x}{2} + x\right) + 1\right) - \log{\left(x \right)}\right)\, dx = C + \frac{3 x^{2}}{4} - x \log{\left(x \right)} + 2 x$$
The graph
The answer [src]
                -2
11      -1   3*e  
-- - 3*e   - -----
4              4  
$$- \frac{3}{e} - \frac{3}{4 e^{2}} + \frac{11}{4}$$
=
=
                -2
11      -1   3*e  
-- - 3*e   - -----
4              4  
$$- \frac{3}{e} - \frac{3}{4 e^{2}} + \frac{11}{4}$$
11/4 - 3*exp(-1) - 3*exp(-2)/4
Numerical answer [src]
1.54486021405821
1.54486021405821

    Use the examples entering the upper and lower limits of integration.