Mister Exam

Integral of x+cosx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  (x + cos(x)) dx
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \left(x + \cos{\left(x \right)}\right)\, dx$$
Integral(x + cos(x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of cosine is sine:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                       2         
 |                       x          
 | (x + cos(x)) dx = C + -- + sin(x)
 |                       2          
/                                   
$$\int \left(x + \cos{\left(x \right)}\right)\, dx = C + \frac{x^{2}}{2} + \sin{\left(x \right)}$$
The graph
The answer [src]
1/2 + sin(1)
$$\frac{1}{2} + \sin{\left(1 \right)}$$
=
=
1/2 + sin(1)
$$\frac{1}{2} + \sin{\left(1 \right)}$$
1/2 + sin(1)
Numerical answer [src]
1.3414709848079
1.3414709848079
The graph
Integral of x+cosx dx

    Use the examples entering the upper and lower limits of integration.