Mister Exam

Other calculators


x*(x-1)^2

Integral of x*(x-1)^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |           2   
 |  x*(x - 1)  dx
 |               
/                
0                
$$\int\limits_{0}^{1} x \left(x - 1\right)^{2}\, dx$$
Integral(x*(x - 1)^2, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of is when :

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                  
 |                      2      3    4
 |          2          x    2*x    x 
 | x*(x - 1)  dx = C + -- - ---- + --
 |                     2     3     4 
/                                    
$$\int x \left(x - 1\right)^{2}\, dx = C + \frac{x^{4}}{4} - \frac{2 x^{3}}{3} + \frac{x^{2}}{2}$$
The graph
The answer [src]
1/12
$$\frac{1}{12}$$
=
=
1/12
$$\frac{1}{12}$$
1/12
Numerical answer [src]
0.0833333333333333
0.0833333333333333
The graph
Integral of x*(x-1)^2 dx

    Use the examples entering the upper and lower limits of integration.