1 / | | ____________ | / 2 | x*\/ 3 + (2*x) dx | / 0
Integral(x*sqrt(3 + (2*x)^2), (x, 0, 1))
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
Now simplify:
Add the constant of integration:
The answer is:
/ | 3/2 | ____________ / 2\ | / 2 \3 + (2*x) / | x*\/ 3 + (2*x) dx = C + --------------- | 12 /
___ ___ \/ 3 7*\/ 7 - ----- + ------- 4 12
=
___ ___ \/ 3 7*\/ 7 - ----- + ------- 4 12
-sqrt(3)/4 + 7*sqrt(7)/12
Use the examples entering the upper and lower limits of integration.