Mister Exam

Other calculators

Integral of x*sqrt(3+(2*x)^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |       ____________   
 |      /          2    
 |  x*\/  3 + (2*x)   dx
 |                      
/                       
0                       
$$\int\limits_{0}^{1} x \sqrt{\left(2 x\right)^{2} + 3}\, dx$$
Integral(x*sqrt(3 + (2*x)^2), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                          
 |                                        3/2
 |      ____________          /         2\   
 |     /          2           \3 + (2*x) /   
 | x*\/  3 + (2*x)   dx = C + ---------------
 |                                   12      
/                                            
$$\int x \sqrt{\left(2 x\right)^{2} + 3}\, dx = C + \frac{\left(\left(2 x\right)^{2} + 3\right)^{\frac{3}{2}}}{12}$$
The graph
The answer [src]
    ___       ___
  \/ 3    7*\/ 7 
- ----- + -------
    4        12  
$$- \frac{\sqrt{3}}{4} + \frac{7 \sqrt{7}}{12}$$
=
=
    ___       ___
  \/ 3    7*\/ 7 
- ----- + -------
    4        12  
$$- \frac{\sqrt{3}}{4} + \frac{7 \sqrt{7}}{12}$$
-sqrt(3)/4 + 7*sqrt(7)/12
Numerical answer [src]
1.11034222956213
1.11034222956213

    Use the examples entering the upper and lower limits of integration.