Mister Exam

Other calculators


x*sin(x^2+1)

Integral of x*sin(x^2+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |       / 2    \   
 |  x*sin\x  + 1/ dx
 |                  
/                   
0                   
$$\int\limits_{0}^{1} x \sin{\left(x^{2} + 1 \right)}\, dx$$
Integral(x*sin(x^2 + 1), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                  
 |                           / 2    \
 |      / 2    \          cos\x  + 1/
 | x*sin\x  + 1/ dx = C - -----------
 |                             2     
/                                    
$$\int x \sin{\left(x^{2} + 1 \right)}\, dx = C - \frac{\cos{\left(x^{2} + 1 \right)}}{2}$$
The graph
The answer [src]
cos(1)   cos(2)
------ - ------
  2        2   
$$- \frac{\cos{\left(2 \right)}}{2} + \frac{\cos{\left(1 \right)}}{2}$$
=
=
cos(1)   cos(2)
------ - ------
  2        2   
$$- \frac{\cos{\left(2 \right)}}{2} + \frac{\cos{\left(1 \right)}}{2}$$
cos(1)/2 - cos(2)/2
Numerical answer [src]
0.478224571207641
0.478224571207641
The graph
Integral of x*sin(x^2+1) dx

    Use the examples entering the upper and lower limits of integration.