Mister Exam

Other calculators


x*sinx*cos2x

Integral of x*sinx*cos2x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  x*sin(x)*cos(2*x) dx
 |                      
/                       
0                       
01xsin(x)cos(2x)dx\int\limits_{0}^{1} x \sin{\left(x \right)} \cos{\left(2 x \right)}\, dx
Integral((x*sin(x))*cos(2*x), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=xu{\left(x \right)} = x and let dv(x)=sin(x)cos(2x)\operatorname{dv}{\left(x \right)} = \sin{\left(x \right)} \cos{\left(2 x \right)}.

    Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

    To find v(x)v{\left(x \right)}:

    1. Rewrite the integrand:

      sin(x)cos(2x)=2sin(x)cos2(x)sin(x)\sin{\left(x \right)} \cos{\left(2 x \right)} = 2 \sin{\left(x \right)} \cos^{2}{\left(x \right)} - \sin{\left(x \right)}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        2sin(x)cos2(x)dx=2sin(x)cos2(x)dx\int 2 \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx = 2 \int \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (u2)du\int \left(- u^{2}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u2du=u2du\int u^{2}\, du = - \int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            So, the result is: u33- \frac{u^{3}}{3}

          Now substitute uu back in:

          cos3(x)3- \frac{\cos^{3}{\left(x \right)}}{3}

        So, the result is: 2cos3(x)3- \frac{2 \cos^{3}{\left(x \right)}}{3}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (sin(x))dx=sin(x)dx\int \left(- \sin{\left(x \right)}\right)\, dx = - \int \sin{\left(x \right)}\, dx

        1. The integral of sine is negative cosine:

          sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

        So, the result is: cos(x)\cos{\left(x \right)}

      The result is: 2cos3(x)3+cos(x)- \frac{2 \cos^{3}{\left(x \right)}}{3} + \cos{\left(x \right)}

    Now evaluate the sub-integral.

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      (2cos3(x)3)dx=2cos3(x)dx3\int \left(- \frac{2 \cos^{3}{\left(x \right)}}{3}\right)\, dx = - \frac{2 \int \cos^{3}{\left(x \right)}\, dx}{3}

      1. Rewrite the integrand:

        cos3(x)=(1sin2(x))cos(x)\cos^{3}{\left(x \right)} = \left(1 - \sin^{2}{\left(x \right)}\right) \cos{\left(x \right)}

      2. There are multiple ways to do this integral.

        Method #1

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          (1u2)du\int \left(1 - u^{2}\right)\, du

          1. Integrate term-by-term:

            1. The integral of a constant is the constant times the variable of integration:

              1du=u\int 1\, du = u

            1. The integral of a constant times a function is the constant times the integral of the function:

              (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

              So, the result is: u33- \frac{u^{3}}{3}

            The result is: u33+u- \frac{u^{3}}{3} + u

          Now substitute uu back in:

          sin3(x)3+sin(x)- \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}

        Method #2

        1. Rewrite the integrand:

          (1sin2(x))cos(x)=sin2(x)cos(x)+cos(x)\left(1 - \sin^{2}{\left(x \right)}\right) \cos{\left(x \right)} = - \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos{\left(x \right)}

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            (sin2(x)cos(x))dx=sin2(x)cos(x)dx\int \left(- \sin^{2}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - \int \sin^{2}{\left(x \right)} \cos{\left(x \right)}\, dx

            1. Let u=sin(x)u = \sin{\left(x \right)}.

              Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

              u2du\int u^{2}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

              Now substitute uu back in:

              sin3(x)3\frac{\sin^{3}{\left(x \right)}}{3}

            So, the result is: sin3(x)3- \frac{\sin^{3}{\left(x \right)}}{3}

          1. The integral of cosine is sine:

            cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

          The result is: sin3(x)3+sin(x)- \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}

        Method #3

        1. Rewrite the integrand:

          (1sin2(x))cos(x)=sin2(x)cos(x)+cos(x)\left(1 - \sin^{2}{\left(x \right)}\right) \cos{\left(x \right)} = - \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos{\left(x \right)}

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            (sin2(x)cos(x))dx=sin2(x)cos(x)dx\int \left(- \sin^{2}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - \int \sin^{2}{\left(x \right)} \cos{\left(x \right)}\, dx

            1. Let u=sin(x)u = \sin{\left(x \right)}.

              Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

              u2du\int u^{2}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

              Now substitute uu back in:

              sin3(x)3\frac{\sin^{3}{\left(x \right)}}{3}

            So, the result is: sin3(x)3- \frac{\sin^{3}{\left(x \right)}}{3}

          1. The integral of cosine is sine:

            cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

          The result is: sin3(x)3+sin(x)- \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}

      So, the result is: 2sin3(x)92sin(x)3\frac{2 \sin^{3}{\left(x \right)}}{9} - \frac{2 \sin{\left(x \right)}}{3}

    1. The integral of cosine is sine:

      cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

    The result is: 2sin3(x)9+sin(x)3\frac{2 \sin^{3}{\left(x \right)}}{9} + \frac{\sin{\left(x \right)}}{3}

  3. Now simplify:

    2xcos3(x)3+xcos(x)2sin3(x)9sin(x)3- \frac{2 x \cos^{3}{\left(x \right)}}{3} + x \cos{\left(x \right)} - \frac{2 \sin^{3}{\left(x \right)}}{9} - \frac{\sin{\left(x \right)}}{3}

  4. Add the constant of integration:

    2xcos3(x)3+xcos(x)2sin3(x)9sin(x)3+constant- \frac{2 x \cos^{3}{\left(x \right)}}{3} + x \cos{\left(x \right)} - \frac{2 \sin^{3}{\left(x \right)}}{9} - \frac{\sin{\left(x \right)}}{3}+ \mathrm{constant}


The answer is:

2xcos3(x)3+xcos(x)2sin3(x)9sin(x)3+constant- \frac{2 x \cos^{3}{\left(x \right)}}{3} + x \cos{\left(x \right)} - \frac{2 \sin^{3}{\left(x \right)}}{9} - \frac{\sin{\left(x \right)}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                3                 /       3            \
 |                            2*sin (x)   sin(x)     |  2*cos (x)         |
 | x*sin(x)*cos(2*x) dx = C - --------- - ------ + x*|- --------- + cos(x)|
 |                                9         3        \      3             /
/                                                                          
xsin(x)cos(2x)dx=C+x(2cos3(x)3+cos(x))2sin3(x)9sin(x)3\int x \sin{\left(x \right)} \cos{\left(2 x \right)}\, dx = C + x \left(- \frac{2 \cos^{3}{\left(x \right)}}{3} + \cos{\left(x \right)}\right) - \frac{2 \sin^{3}{\left(x \right)}}{9} - \frac{\sin{\left(x \right)}}{3}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.5-0.5
The answer [src]
  4*cos(1)*sin(2)   cos(1)*cos(2)   2*sin(1)*sin(2)   5*cos(2)*sin(1)
- --------------- + ------------- + --------------- + ---------------
         9                3                3                 9       
4sin(2)cos(1)9+5sin(1)cos(2)9+cos(1)cos(2)3+2sin(1)sin(2)3- \frac{4 \sin{\left(2 \right)} \cos{\left(1 \right)}}{9} + \frac{5 \sin{\left(1 \right)} \cos{\left(2 \right)}}{9} + \frac{\cos{\left(1 \right)} \cos{\left(2 \right)}}{3} + \frac{2 \sin{\left(1 \right)} \sin{\left(2 \right)}}{3}
=
=
  4*cos(1)*sin(2)   cos(1)*cos(2)   2*sin(1)*sin(2)   5*cos(2)*sin(1)
- --------------- + ------------- + --------------- + ---------------
         9                3                3                 9       
4sin(2)cos(1)9+5sin(1)cos(2)9+cos(1)cos(2)3+2sin(1)sin(2)3- \frac{4 \sin{\left(2 \right)} \cos{\left(1 \right)}}{9} + \frac{5 \sin{\left(1 \right)} \cos{\left(2 \right)}}{9} + \frac{\cos{\left(1 \right)} \cos{\left(2 \right)}}{3} + \frac{2 \sin{\left(1 \right)} \sin{\left(2 \right)}}{3}
-4*cos(1)*sin(2)/9 + cos(1)*cos(2)/3 + 2*sin(1)*sin(2)/3 + 5*cos(2)*sin(1)/9
Numerical answer [src]
0.0222544104112996
0.0222544104112996
The graph
Integral of x*sinx*cos2x dx

    Use the examples entering the upper and lower limits of integration.