Mister Exam

Other calculators


x*sinx*cos2x

Integral of x*sinx*cos2x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  x*sin(x)*cos(2*x) dx
 |                      
/                       
0                       
$$\int\limits_{0}^{1} x \sin{\left(x \right)} \cos{\left(2 x \right)}\, dx$$
Integral((x*sin(x))*cos(2*x), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of sine is negative cosine:

        So, the result is:

      The result is:

    Now evaluate the sub-integral.

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Rewrite the integrand:

      2. There are multiple ways to do this integral.

        Method #1

        1. Let .

          Then let and substitute :

          1. Integrate term-by-term:

            1. The integral of a constant is the constant times the variable of integration:

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is when :

              So, the result is:

            The result is:

          Now substitute back in:

        Method #2

        1. Rewrite the integrand:

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. Let .

              Then let and substitute :

              1. The integral of is when :

              Now substitute back in:

            So, the result is:

          1. The integral of cosine is sine:

          The result is:

        Method #3

        1. Rewrite the integrand:

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. Let .

              Then let and substitute :

              1. The integral of is when :

              Now substitute back in:

            So, the result is:

          1. The integral of cosine is sine:

          The result is:

      So, the result is:

    1. The integral of cosine is sine:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                3                 /       3            \
 |                            2*sin (x)   sin(x)     |  2*cos (x)         |
 | x*sin(x)*cos(2*x) dx = C - --------- - ------ + x*|- --------- + cos(x)|
 |                                9         3        \      3             /
/                                                                          
$$\int x \sin{\left(x \right)} \cos{\left(2 x \right)}\, dx = C + x \left(- \frac{2 \cos^{3}{\left(x \right)}}{3} + \cos{\left(x \right)}\right) - \frac{2 \sin^{3}{\left(x \right)}}{9} - \frac{\sin{\left(x \right)}}{3}$$
The graph
The answer [src]
  4*cos(1)*sin(2)   cos(1)*cos(2)   2*sin(1)*sin(2)   5*cos(2)*sin(1)
- --------------- + ------------- + --------------- + ---------------
         9                3                3                 9       
$$- \frac{4 \sin{\left(2 \right)} \cos{\left(1 \right)}}{9} + \frac{5 \sin{\left(1 \right)} \cos{\left(2 \right)}}{9} + \frac{\cos{\left(1 \right)} \cos{\left(2 \right)}}{3} + \frac{2 \sin{\left(1 \right)} \sin{\left(2 \right)}}{3}$$
=
=
  4*cos(1)*sin(2)   cos(1)*cos(2)   2*sin(1)*sin(2)   5*cos(2)*sin(1)
- --------------- + ------------- + --------------- + ---------------
         9                3                3                 9       
$$- \frac{4 \sin{\left(2 \right)} \cos{\left(1 \right)}}{9} + \frac{5 \sin{\left(1 \right)} \cos{\left(2 \right)}}{9} + \frac{\cos{\left(1 \right)} \cos{\left(2 \right)}}{3} + \frac{2 \sin{\left(1 \right)} \sin{\left(2 \right)}}{3}$$
-4*cos(1)*sin(2)/9 + cos(1)*cos(2)/3 + 2*sin(1)*sin(2)/3 + 5*cos(2)*sin(1)/9
Numerical answer [src]
0.0222544104112996
0.0222544104112996
The graph
Integral of x*sinx*cos2x dx

    Use the examples entering the upper and lower limits of integration.