Integral of x*sinx*cos2x dx
The solution
Detail solution
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x and let dv(x)=sin(x)cos(2x).
Then du(x)=1.
To find v(x):
-
Rewrite the integrand:
sin(x)cos(2x)=2sin(x)cos2(x)−sin(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2sin(x)cos2(x)dx=2∫sin(x)cos2(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫(−u2)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u2du=−∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −3u3
Now substitute u back in:
−3cos3(x)
So, the result is: −32cos3(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin(x))dx=−∫sin(x)dx
-
The integral of sine is negative cosine:
∫sin(x)dx=−cos(x)
So, the result is: cos(x)
The result is: −32cos3(x)+cos(x)
Now evaluate the sub-integral.
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−32cos3(x))dx=−32∫cos3(x)dx
-
Rewrite the integrand:
cos3(x)=(1−sin2(x))cos(x)
-
There are multiple ways to do this integral.
Method #1
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫(1−u2)du
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u2)du=−∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −3u3
The result is: −3u3+u
Now substitute u back in:
−3sin3(x)+sin(x)
Method #2
-
Rewrite the integrand:
(1−sin2(x))cos(x)=−sin2(x)cos(x)+cos(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin2(x)cos(x))dx=−∫sin2(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
Now substitute u back in:
3sin3(x)
So, the result is: −3sin3(x)
-
The integral of cosine is sine:
∫cos(x)dx=sin(x)
The result is: −3sin3(x)+sin(x)
Method #3
-
Rewrite the integrand:
(1−sin2(x))cos(x)=−sin2(x)cos(x)+cos(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin2(x)cos(x))dx=−∫sin2(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
Now substitute u back in:
3sin3(x)
So, the result is: −3sin3(x)
-
The integral of cosine is sine:
∫cos(x)dx=sin(x)
The result is: −3sin3(x)+sin(x)
So, the result is: 92sin3(x)−32sin(x)
-
The integral of cosine is sine:
∫cos(x)dx=sin(x)
The result is: 92sin3(x)+3sin(x)
-
Now simplify:
−32xcos3(x)+xcos(x)−92sin3(x)−3sin(x)
-
Add the constant of integration:
−32xcos3(x)+xcos(x)−92sin3(x)−3sin(x)+constant
The answer is:
−32xcos3(x)+xcos(x)−92sin3(x)−3sin(x)+constant
The answer (Indefinite)
[src]
/ 3 / 3 \
| 2*sin (x) sin(x) | 2*cos (x) |
| x*sin(x)*cos(2*x) dx = C - --------- - ------ + x*|- --------- + cos(x)|
| 9 3 \ 3 /
/
∫xsin(x)cos(2x)dx=C+x(−32cos3(x)+cos(x))−92sin3(x)−3sin(x)
The graph
4*cos(1)*sin(2) cos(1)*cos(2) 2*sin(1)*sin(2) 5*cos(2)*sin(1)
- --------------- + ------------- + --------------- + ---------------
9 3 3 9
−94sin(2)cos(1)+95sin(1)cos(2)+3cos(1)cos(2)+32sin(1)sin(2)
=
4*cos(1)*sin(2) cos(1)*cos(2) 2*sin(1)*sin(2) 5*cos(2)*sin(1)
- --------------- + ------------- + --------------- + ---------------
9 3 3 9
−94sin(2)cos(1)+95sin(1)cos(2)+3cos(1)cos(2)+32sin(1)sin(2)
-4*cos(1)*sin(2)/9 + cos(1)*cos(2)/3 + 2*sin(1)*sin(2)/3 + 5*cos(2)*sin(1)/9
Use the examples entering the upper and lower limits of integration.