Mister Exam

Integral of x*sin(x²) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |       / 2\   
 |  x*sin\x / dx
 |              
/               
0               
01xsin(x2)dx\int\limits_{0}^{1} x \sin{\left(x^{2} \right)}\, dx
Integral(x*sin(x^2), (x, 0, 1))
Detail solution
  1. Let u=x2u = x^{2}.

    Then let du=2xdxdu = 2 x dx and substitute du2\frac{du}{2}:

    sin(u)4du\int \frac{\sin{\left(u \right)}}{4}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      sin(u)2du=sin(u)du2\int \frac{\sin{\left(u \right)}}{2}\, du = \frac{\int \sin{\left(u \right)}\, du}{2}

      1. The integral of sine is negative cosine:

        sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

      So, the result is: cos(u)2- \frac{\cos{\left(u \right)}}{2}

    Now substitute uu back in:

    cos(x2)2- \frac{\cos{\left(x^{2} \right)}}{2}

  2. Add the constant of integration:

    cos(x2)2+constant- \frac{\cos{\left(x^{2} \right)}}{2}+ \mathrm{constant}


The answer is:

cos(x2)2+constant- \frac{\cos{\left(x^{2} \right)}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                          
 |                       / 2\
 |      / 2\          cos\x /
 | x*sin\x / dx = C - -------
 |                       2   
/                            
cosx22-{{\cos x^2}\over{2}}
The graph
0.001.000.100.200.300.400.500.600.700.800.901-1
The answer [src]
1   cos(1)
- - ------
2     2   
12cos12{{1}\over{2}}-{{\cos 1}\over{2}}
=
=
1   cos(1)
- - ------
2     2   
cos(1)2+12- \frac{\cos{\left(1 \right)}}{2} + \frac{1}{2}
Numerical answer [src]
0.22984884706593
0.22984884706593
The graph
Integral of x*sin(x²) dx

    Use the examples entering the upper and lower limits of integration.