Integral of x*sin(x²) dx
The solution
Detail solution
-
Let u=x2.
Then let du=2xdx and substitute 2du:
∫4sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2sin(u)du=2∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −2cos(u)
Now substitute u back in:
−2cos(x2)
-
Add the constant of integration:
−2cos(x2)+constant
The answer is:
−2cos(x2)+constant
The answer (Indefinite)
[src]
/
| / 2\
| / 2\ cos\x /
| x*sin\x / dx = C - -------
| 2
/
−2cosx2
The graph
21−2cos1
=
−2cos(1)+21
Use the examples entering the upper and lower limits of integration.