Integral of x*sin(a*x)*dx dx
The solution
The answer (Indefinite)
[src]
// 0 for a = 0\
|| |
/ || //sin(a*x) \ | // 0 for a = 0\
| || ||-------- for a != 0| | || |
| x*sin(a*x) dx = C - |<-|< a | | + x*|<-cos(a*x) |
| || || | | ||---------- otherwise|
/ || \\ x otherwise / | \\ a /
||------------------------- otherwise|
\\ a /
$$\int x \sin{\left(a x \right)}\, dx = C + x \left(\begin{cases} 0 & \text{for}\: a = 0 \\- \frac{\cos{\left(a x \right)}}{a} & \text{otherwise} \end{cases}\right) - \begin{cases} 0 & \text{for}\: a = 0 \\- \frac{\begin{cases} \frac{\sin{\left(a x \right)}}{a} & \text{for}\: a \neq 0 \\x & \text{otherwise} \end{cases}}{a} & \text{otherwise} \end{cases}$$
/sin(a) cos(a)
|------ - ------ for And(a > -oo, a < oo, a != 0)
| 2 a
< a
|
| 0 otherwise
\
$$\begin{cases} - \frac{\cos{\left(a \right)}}{a} + \frac{\sin{\left(a \right)}}{a^{2}} & \text{for}\: a > -\infty \wedge a < \infty \wedge a \neq 0 \\0 & \text{otherwise} \end{cases}$$
=
/sin(a) cos(a)
|------ - ------ for And(a > -oo, a < oo, a != 0)
| 2 a
< a
|
| 0 otherwise
\
$$\begin{cases} - \frac{\cos{\left(a \right)}}{a} + \frac{\sin{\left(a \right)}}{a^{2}} & \text{for}\: a > -\infty \wedge a < \infty \wedge a \neq 0 \\0 & \text{otherwise} \end{cases}$$
Piecewise((sin(a)/a^2 - cos(a)/a, (a > -oo)∧(a < oo)∧(Ne(a, 0))), (0, True))
Use the examples entering the upper and lower limits of integration.