157 --- 50 / | | x | -*sin(x) dx | 2 | / 0
Integral((x/2)*sin(x), (x, 0, 157/50))
Use integration by parts:
Let and let .
Then .
To find :
The integral of sine is negative cosine:
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Add the constant of integration:
The answer is:
/ | | x sin(x) x*cos(x) | -*sin(x) dx = C + ------ - -------- | 2 2 2 | /
/157\ /157\ sin|---| 157*cos|---| \ 50/ \ 50/ -------- - ------------ 2 100
=
/157\ /157\ sin|---| 157*cos|---| \ 50/ \ 50/ -------- - ------------ 2 100
sin(157/50)/2 - 157*cos(157/50)/100
Use the examples entering the upper and lower limits of integration.