Mister Exam

Other calculators

Integral of x*ln(2x-3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |  x*log(2*x - 3) dx
 |                   
/                    
0                    
$$\int\limits_{0}^{1} x \log{\left(2 x - 3 \right)}\, dx$$
Integral(x*log(2*x - 3), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of is when :

    Now evaluate the sub-integral.

  2. Rewrite the integrand:

  3. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant is the constant times the variable of integration:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is .

          So, the result is:

        Now substitute back in:

      So, the result is:

    The result is:

  4. Now simplify:

  5. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                 2    2             
 |                         9*log(-3 + 2*x)   3*x   x    x *log(2*x - 3)
 | x*log(2*x - 3) dx = C - --------------- - --- - -- + ---------------
 |                                8           4    4           2       
/                                                                      
$$\int x \log{\left(2 x - 3 \right)}\, dx = C + \frac{x^{2} \log{\left(2 x - 3 \right)}}{2} - \frac{x^{2}}{4} - \frac{3 x}{4} - \frac{9 \log{\left(2 x - 3 \right)}}{8}$$
The graph
The answer [src]
     9*log(3)   pi*I
-1 + -------- + ----
        8        2  
$$-1 + \frac{9 \log{\left(3 \right)}}{8} + \frac{i \pi}{2}$$
=
=
     9*log(3)   pi*I
-1 + -------- + ----
        8        2  
$$-1 + \frac{9 \log{\left(3 \right)}}{8} + \frac{i \pi}{2}$$
-1 + 9*log(3)/8 + pi*i/2
Numerical answer [src]
(0.235938824751623 + 1.5707963267949j)
(0.235938824751623 + 1.5707963267949j)

    Use the examples entering the upper and lower limits of integration.