1 / | | x*cos(x) | -------- dx | 2 | / 0
Integral((x*cos(x))/2, (x, 0, 1))
The integral of a constant times a function is the constant times the integral of the function:
Use integration by parts:
Let and let .
Then .
To find :
The integral of cosine is sine:
Now evaluate the sub-integral.
The integral of sine is negative cosine:
So, the result is:
Add the constant of integration:
The answer is:
/ | | x*cos(x) cos(x) x*sin(x) | -------- dx = C + ------ + -------- | 2 2 2 | /
1 cos(1) sin(1) - - + ------ + ------ 2 2 2
=
1 cos(1) sin(1) - - + ------ + ------ 2 2 2
-1/2 + cos(1)/2 + sin(1)/2
Use the examples entering the upper and lower limits of integration.