Mister Exam

Other calculators

Integral of x*arcsin(1/x)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |        /1\   
 |  x*asin|-| dx
 |        \x/   
 |              
/               
0               
$$\int\limits_{0}^{1} x \operatorname{asin}{\left(\frac{1}{x} \right)}\, dx$$
Integral(x*asin(1/x), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of is when :

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Don't know the steps in finding this integral.

      But the integral is

    So, the result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                      /   _________                            
                      |  /       2        | 2|                 
                      |\/  -1 + x     for |x | > 1             
                      <                                        
  /                   |     ________                  2     /1\
 |                    |    /      2                  x *asin|-|
 |       /1\          \I*\/  1 - x     otherwise            \x/
 | x*asin|-| dx = C + ---------------------------- + ----------
 |       \x/                       2                     2     
 |                                                             
/                                                              
$$\int x \operatorname{asin}{\left(\frac{1}{x} \right)}\, dx = C + \frac{x^{2} \operatorname{asin}{\left(\frac{1}{x} \right)}}{2} + \frac{\begin{cases} \sqrt{x^{2} - 1} & \text{for}\: \left|{x^{2}}\right| > 1 \\i \sqrt{1 - x^{2}} & \text{otherwise} \end{cases}}{2}$$
The graph
The answer [src]
  1             
  /             
 |              
 |        /1\   
 |  x*asin|-| dx
 |        \x/   
 |              
/               
0               
$$\int\limits_{0}^{1} x \operatorname{asin}{\left(\frac{1}{x} \right)}\, dx$$
=
=
  1             
  /             
 |              
 |        /1\   
 |  x*asin|-| dx
 |        \x/   
 |              
/               
0               
$$\int\limits_{0}^{1} x \operatorname{asin}{\left(\frac{1}{x} \right)}\, dx$$
Integral(x*asin(1/x), (x, 0, 1))
Numerical answer [src]
(0.785398163397448 - 0.5j)
(0.785398163397448 - 0.5j)

    Use the examples entering the upper and lower limits of integration.