1 / | | x - 2 | ------------ dx | 2 | x - 4*x + 7 | / 0
Integral((x - 2)/(x^2 - 4*x + 7), (x, 0, 1))
/ | | x - 2 | ------------ dx | 2 | x - 4*x + 7 | /
/ 2*x - 4 \
|------------| /0\
| 2 | |-|
x - 2 \x - 4*x + 7/ \3/
------------ = -------------- + --------------------------
2 2 2
x - 4*x + 7 / ___ ___\
|-\/ 3 2*\/ 3 |
|-------*x + -------| + 1
\ 3 3 / / | | x - 2 | ------------ dx | 2 = | x - 4*x + 7 | /
/
|
| 2*x - 4
| ------------ dx
| 2
| x - 4*x + 7
|
/
------------------
2 /
|
| 2*x - 4
| ------------ dx
| 2
| x - 4*x + 7
|
/
------------------
2 2 u = x - 4*x
/
|
| 1
| ----- du
| 7 + u
|
/ log(7 + u)
----------- = ----------
2 2 /
|
| 2*x - 4
| ------------ dx
| 2
| x - 4*x + 7
| / 2 \
/ log\7 + x - 4*x/
------------------ = -----------------
2 2 0
___ ___
2*\/ 3 x*\/ 3
v = ------- - -------
3 3 True
True
/ 2 \
log\7 + x - 4*x/
C + -----------------
2 / | / 2 \ | x - 2 log\x - 4*x + 7/ | ------------ dx = C + ----------------- | 2 2 | x - 4*x + 7 | /
log(4) log(7) ------ - ------ 2 2
=
log(4) log(7) ------ - ------ 2 2
log(4)/2 - log(7)/2
Use the examples entering the upper and lower limits of integration.