2 / | | x - 2 | --------- dx | _______ | \/ x - 1 | / 1
Integral((x - 2)/sqrt(x - 1), (x, 1, 2))
There are multiple ways to do this integral.
Let .
Then let and substitute :
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
Now substitute back in:
Rewrite the integrand:
Integrate term-by-term:
Let .
Then let and substitute :
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
There are multiple ways to do this integral.
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of is when :
The result is:
Rewrite the integrand:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of is when :
The result is:
So, the result is:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The result is:
Now substitute back in:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | 3/2 | x - 2 _______ 2*(x - 1) | --------- dx = C - 2*\/ x - 1 + ------------ | _______ 3 | \/ x - 1 | /
Use the examples entering the upper and lower limits of integration.