Mister Exam

Other calculators


(x-3)sin(x/3)dx

Integral of (x-3)sin(x/3)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |             /x\   
 |  (x - 3)*sin|-| dx
 |             \3/   
 |                   
/                    
0                    
01(x3)sin(x3)dx\int\limits_{0}^{1} \left(x - 3\right) \sin{\left(\frac{x}{3} \right)}\, dx
Integral((x - 3)*sin(x/3), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

      (x3)sin(x3)=xsin(x3)3sin(x3)\left(x - 3\right) \sin{\left(\frac{x}{3} \right)} = x \sin{\left(\frac{x}{3} \right)} - 3 \sin{\left(\frac{x}{3} \right)}

    2. Integrate term-by-term:

      1. Use integration by parts:

        udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

        Let u(x)=xu{\left(x \right)} = x and let dv(x)=sin(x3)\operatorname{dv}{\left(x \right)} = \sin{\left(\frac{x}{3} \right)}.

        Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

        To find v(x)v{\left(x \right)}:

        1. Let u=x3u = \frac{x}{3}.

          Then let du=dx3du = \frac{dx}{3} and substitute 3du3 du:

          3sin(u)du\int 3 \sin{\left(u \right)}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            sin(u)du=3sin(u)du\int \sin{\left(u \right)}\, du = 3 \int \sin{\left(u \right)}\, du

            1. The integral of sine is negative cosine:

              sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

            So, the result is: 3cos(u)- 3 \cos{\left(u \right)}

          Now substitute uu back in:

          3cos(x3)- 3 \cos{\left(\frac{x}{3} \right)}

        Now evaluate the sub-integral.

      2. The integral of a constant times a function is the constant times the integral of the function:

        (3cos(x3))dx=3cos(x3)dx\int \left(- 3 \cos{\left(\frac{x}{3} \right)}\right)\, dx = - 3 \int \cos{\left(\frac{x}{3} \right)}\, dx

        1. Let u=x3u = \frac{x}{3}.

          Then let du=dx3du = \frac{dx}{3} and substitute 3du3 du:

          3cos(u)du\int 3 \cos{\left(u \right)}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            cos(u)du=3cos(u)du\int \cos{\left(u \right)}\, du = 3 \int \cos{\left(u \right)}\, du

            1. The integral of cosine is sine:

              cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

            So, the result is: 3sin(u)3 \sin{\left(u \right)}

          Now substitute uu back in:

          3sin(x3)3 \sin{\left(\frac{x}{3} \right)}

        So, the result is: 9sin(x3)- 9 \sin{\left(\frac{x}{3} \right)}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (3sin(x3))dx=3sin(x3)dx\int \left(- 3 \sin{\left(\frac{x}{3} \right)}\right)\, dx = - 3 \int \sin{\left(\frac{x}{3} \right)}\, dx

        1. Let u=x3u = \frac{x}{3}.

          Then let du=dx3du = \frac{dx}{3} and substitute 3du3 du:

          3sin(u)du\int 3 \sin{\left(u \right)}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            sin(u)du=3sin(u)du\int \sin{\left(u \right)}\, du = 3 \int \sin{\left(u \right)}\, du

            1. The integral of sine is negative cosine:

              sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

            So, the result is: 3cos(u)- 3 \cos{\left(u \right)}

          Now substitute uu back in:

          3cos(x3)- 3 \cos{\left(\frac{x}{3} \right)}

        So, the result is: 9cos(x3)9 \cos{\left(\frac{x}{3} \right)}

      The result is: 3xcos(x3)+9sin(x3)+9cos(x3)- 3 x \cos{\left(\frac{x}{3} \right)} + 9 \sin{\left(\frac{x}{3} \right)} + 9 \cos{\left(\frac{x}{3} \right)}

    Method #2

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(x)=x3u{\left(x \right)} = x - 3 and let dv(x)=sin(x3)\operatorname{dv}{\left(x \right)} = \sin{\left(\frac{x}{3} \right)}.

      Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

      To find v(x)v{\left(x \right)}:

      1. Let u=x3u = \frac{x}{3}.

        Then let du=dx3du = \frac{dx}{3} and substitute 3du3 du:

        3sin(u)du\int 3 \sin{\left(u \right)}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          sin(u)du=3sin(u)du\int \sin{\left(u \right)}\, du = 3 \int \sin{\left(u \right)}\, du

          1. The integral of sine is negative cosine:

            sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

          So, the result is: 3cos(u)- 3 \cos{\left(u \right)}

        Now substitute uu back in:

        3cos(x3)- 3 \cos{\left(\frac{x}{3} \right)}

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      (3cos(x3))dx=3cos(x3)dx\int \left(- 3 \cos{\left(\frac{x}{3} \right)}\right)\, dx = - 3 \int \cos{\left(\frac{x}{3} \right)}\, dx

      1. Let u=x3u = \frac{x}{3}.

        Then let du=dx3du = \frac{dx}{3} and substitute 3du3 du:

        3cos(u)du\int 3 \cos{\left(u \right)}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          cos(u)du=3cos(u)du\int \cos{\left(u \right)}\, du = 3 \int \cos{\left(u \right)}\, du

          1. The integral of cosine is sine:

            cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

          So, the result is: 3sin(u)3 \sin{\left(u \right)}

        Now substitute uu back in:

        3sin(x3)3 \sin{\left(\frac{x}{3} \right)}

      So, the result is: 9sin(x3)- 9 \sin{\left(\frac{x}{3} \right)}

    Method #3

    1. Rewrite the integrand:

      (x3)sin(x3)=xsin(x3)3sin(x3)\left(x - 3\right) \sin{\left(\frac{x}{3} \right)} = x \sin{\left(\frac{x}{3} \right)} - 3 \sin{\left(\frac{x}{3} \right)}

    2. Integrate term-by-term:

      1. Use integration by parts:

        udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

        Let u(x)=xu{\left(x \right)} = x and let dv(x)=sin(x3)\operatorname{dv}{\left(x \right)} = \sin{\left(\frac{x}{3} \right)}.

        Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

        To find v(x)v{\left(x \right)}:

        1. Let u=x3u = \frac{x}{3}.

          Then let du=dx3du = \frac{dx}{3} and substitute 3du3 du:

          3sin(u)du\int 3 \sin{\left(u \right)}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            sin(u)du=3sin(u)du\int \sin{\left(u \right)}\, du = 3 \int \sin{\left(u \right)}\, du

            1. The integral of sine is negative cosine:

              sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

            So, the result is: 3cos(u)- 3 \cos{\left(u \right)}

          Now substitute uu back in:

          3cos(x3)- 3 \cos{\left(\frac{x}{3} \right)}

        Now evaluate the sub-integral.

      2. The integral of a constant times a function is the constant times the integral of the function:

        (3cos(x3))dx=3cos(x3)dx\int \left(- 3 \cos{\left(\frac{x}{3} \right)}\right)\, dx = - 3 \int \cos{\left(\frac{x}{3} \right)}\, dx

        1. Let u=x3u = \frac{x}{3}.

          Then let du=dx3du = \frac{dx}{3} and substitute 3du3 du:

          3cos(u)du\int 3 \cos{\left(u \right)}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            cos(u)du=3cos(u)du\int \cos{\left(u \right)}\, du = 3 \int \cos{\left(u \right)}\, du

            1. The integral of cosine is sine:

              cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

            So, the result is: 3sin(u)3 \sin{\left(u \right)}

          Now substitute uu back in:

          3sin(x3)3 \sin{\left(\frac{x}{3} \right)}

        So, the result is: 9sin(x3)- 9 \sin{\left(\frac{x}{3} \right)}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (3sin(x3))dx=3sin(x3)dx\int \left(- 3 \sin{\left(\frac{x}{3} \right)}\right)\, dx = - 3 \int \sin{\left(\frac{x}{3} \right)}\, dx

        1. Let u=x3u = \frac{x}{3}.

          Then let du=dx3du = \frac{dx}{3} and substitute 3du3 du:

          3sin(u)du\int 3 \sin{\left(u \right)}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            sin(u)du=3sin(u)du\int \sin{\left(u \right)}\, du = 3 \int \sin{\left(u \right)}\, du

            1. The integral of sine is negative cosine:

              sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

            So, the result is: 3cos(u)- 3 \cos{\left(u \right)}

          Now substitute uu back in:

          3cos(x3)- 3 \cos{\left(\frac{x}{3} \right)}

        So, the result is: 9cos(x3)9 \cos{\left(\frac{x}{3} \right)}

      The result is: 3xcos(x3)+9sin(x3)+9cos(x3)- 3 x \cos{\left(\frac{x}{3} \right)} + 9 \sin{\left(\frac{x}{3} \right)} + 9 \cos{\left(\frac{x}{3} \right)}

  2. Now simplify:

    3xcos(x3)+92sin(x3+π4)- 3 x \cos{\left(\frac{x}{3} \right)} + 9 \sqrt{2} \sin{\left(\frac{x}{3} + \frac{\pi}{4} \right)}

  3. Add the constant of integration:

    3xcos(x3)+92sin(x3+π4)+constant- 3 x \cos{\left(\frac{x}{3} \right)} + 9 \sqrt{2} \sin{\left(\frac{x}{3} + \frac{\pi}{4} \right)}+ \mathrm{constant}


The answer is:

3xcos(x3)+92sin(x3+π4)+constant- 3 x \cos{\left(\frac{x}{3} \right)} + 9 \sqrt{2} \sin{\left(\frac{x}{3} + \frac{\pi}{4} \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                        
 |                                                         
 |            /x\               /x\        /x\          /x\
 | (x - 3)*sin|-| dx = C + 9*cos|-| + 9*sin|-| - 3*x*cos|-|
 |            \3/               \3/        \3/          \3/
 |                                                         
/                                                          
(x3)sin(x3)dx=C3xcos(x3)+9sin(x3)+9cos(x3)\int \left(x - 3\right) \sin{\left(\frac{x}{3} \right)}\, dx = C - 3 x \cos{\left(\frac{x}{3} \right)} + 9 \sin{\left(\frac{x}{3} \right)} + 9 \cos{\left(\frac{x}{3} \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-1010
The answer [src]
-9 + 6*cos(1/3) + 9*sin(1/3)
9+9sin(13)+6cos(13)-9 + 9 \sin{\left(\frac{1}{3} \right)} + 6 \cos{\left(\frac{1}{3} \right)}
=
=
-9 + 6*cos(1/3) + 9*sin(1/3)
9+9sin(13)+6cos(13)-9 + 9 \sin{\left(\frac{1}{3} \right)} + 6 \cos{\left(\frac{1}{3} \right)}
-9 + 6*cos(1/3) + 9*sin(1/3)
Numerical answer [src]
-0.385506050946204
-0.385506050946204
The graph
Integral of (x-3)sin(x/3)dx dx

    Use the examples entering the upper and lower limits of integration.