Mister Exam

Other calculators

Integral of (x-3)*(x-5) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  (x - 3)*(x - 5) dx
 |                    
/                     
0                     
01(x5)(x3)dx\int\limits_{0}^{1} \left(x - 5\right) \left(x - 3\right)\, dx
Integral((x - 3)*(x - 5), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    (x5)(x3)=x28x+15\left(x - 5\right) \left(x - 3\right) = x^{2} - 8 x + 15

  2. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (8x)dx=8xdx\int \left(- 8 x\right)\, dx = - 8 \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: 4x2- 4 x^{2}

    1. The integral of a constant is the constant times the variable of integration:

      15dx=15x\int 15\, dx = 15 x

    The result is: x334x2+15x\frac{x^{3}}{3} - 4 x^{2} + 15 x

  3. Now simplify:

    x(x212x+45)3\frac{x \left(x^{2} - 12 x + 45\right)}{3}

  4. Add the constant of integration:

    x(x212x+45)3+constant\frac{x \left(x^{2} - 12 x + 45\right)}{3}+ \mathrm{constant}


The answer is:

x(x212x+45)3+constant\frac{x \left(x^{2} - 12 x + 45\right)}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                        3
 |                             2          x 
 | (x - 3)*(x - 5) dx = C - 4*x  + 15*x + --
 |                                        3 
/                                           
(x5)(x3)dx=C+x334x2+15x\int \left(x - 5\right) \left(x - 3\right)\, dx = C + \frac{x^{3}}{3} - 4 x^{2} + 15 x
The graph
0.001.000.100.200.300.400.500.600.700.800.90020
The answer [src]
34/3
343\frac{34}{3}
=
=
34/3
343\frac{34}{3}
34/3
Numerical answer [src]
11.3333333333333
11.3333333333333

    Use the examples entering the upper and lower limits of integration.