Mister Exam

Other calculators

Integral of (x-3)*(x-5) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  (x - 3)*(x - 5) dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \left(x - 5\right) \left(x - 3\right)\, dx$$
Integral((x - 3)*(x - 5), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                        3
 |                             2          x 
 | (x - 3)*(x - 5) dx = C - 4*x  + 15*x + --
 |                                        3 
/                                           
$$\int \left(x - 5\right) \left(x - 3\right)\, dx = C + \frac{x^{3}}{3} - 4 x^{2} + 15 x$$
The graph
The answer [src]
34/3
$$\frac{34}{3}$$
=
=
34/3
$$\frac{34}{3}$$
34/3
Numerical answer [src]
11.3333333333333
11.3333333333333

    Use the examples entering the upper and lower limits of integration.