1 / | | x - 6 | ------------ dx | 4 | x + 6*x + 8 | / 0
Integral((x - 6)/(x^4 + 6*x + 8), (x, 0, 1))
Rewrite the integrand:
Integrate term-by-term:
Don't know the steps in finding this integral.
But the integral is
The integral of a constant times a function is the constant times the integral of the function:
Don't know the steps in finding this integral.
But the integral is
So, the result is:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | / / 2 3\\ / / 2 3\\ | x - 6 | 4 2 |729 54045*t 19127*t 486405*t || | 4 2 | 227152 4919296*t 776646*t 8301312*t || | ------------ dx = C - 6*RootSum|96080*t + 648*t + 48*t + 1, t -> t*log|--- + x - -------- + ------- + ---------|| + RootSum|24020*t + 512*t + 9*t + 2, t -> t*log|- ------ + x - ---------- + -------- + ----------|| | 4 \ \512 128 256 64 // \ \ 104865 20973 34955 6991 // | x + 6*x + 8 | /
/ / 3 2\\ / / 3 2\\ | 4 2 |23465078 300499808*t 134508634*t 56764064*t || | 4 2 |25116929 300499808*t 134508634*t 56764064*t || - RootSum|4804*t + 1960*t - 747*t + 67, t -> t*log|-------- - ------------ - ----------- - -----------|| + RootSum|4804*t + 1960*t - 747*t + 67, t -> t*log|-------- - ------------ - ----------- - -----------|| \ \1651851 1651851 1651851 1651851 // \ \1651851 1651851 1651851 1651851 //
=
/ / 3 2\\ / / 3 2\\ | 4 2 |23465078 300499808*t 134508634*t 56764064*t || | 4 2 |25116929 300499808*t 134508634*t 56764064*t || - RootSum|4804*t + 1960*t - 747*t + 67, t -> t*log|-------- - ------------ - ----------- - -----------|| + RootSum|4804*t + 1960*t - 747*t + 67, t -> t*log|-------- - ------------ - ----------- - -----------|| \ \1651851 1651851 1651851 1651851 // \ \1651851 1651851 1651851 1651851 //
-RootSum(4804*_t^4 + 1960*_t^2 - 747*_t + 67, Lambda(_t, _t*log(23465078/1651851 - 300499808*_t^3/1651851 - 134508634*_t/1651851 - 56764064*_t^2/1651851))) + RootSum(4804*_t^4 + 1960*_t^2 - 747*_t + 67, Lambda(_t, _t*log(25116929/1651851 - 300499808*_t^3/1651851 - 134508634*_t/1651851 - 56764064*_t^2/1651851)))
Use the examples entering the upper and lower limits of integration.