Mister Exam

Other calculators

Integral of (x-6)/(x^4+6x+8) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |     x - 6       
 |  ------------ dx
 |   4             
 |  x  + 6*x + 8   
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{x - 6}{\left(x^{4} + 6 x\right) + 8}\, dx$$
Integral((x - 6)/(x^4 + 6*x + 8), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. Don't know the steps in finding this integral.

      But the integral is

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Don't know the steps in finding this integral.

        But the integral is

      So, the result is:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                                                                                                                                                                         
 |                                /                                        /                 2                     3\\          /                                       /                        2                       3\\
 |    x - 6                       |       4        2                       |729       54045*t    19127*t   486405*t ||          |       4        2                      |  227152       4919296*t    776646*t   8301312*t ||
 | ------------ dx = C - 6*RootSum|96080*t  + 648*t  + 48*t + 1, t -> t*log|--- + x - -------- + ------- + ---------|| + RootSum|24020*t  + 512*t  + 9*t + 2, t -> t*log|- ------ + x - ---------- + -------- + ----------||
 |  4                             \                                        \512         128        256         64   //          \                                       \  104865         20973       34955        6991   //
 | x  + 6*x + 8                                                                                                                                                                                                             
 |                                                                                                                                                                                                                          
/                                                                                                                                                                                                                           
$$\int \frac{x - 6}{\left(x^{4} + 6 x\right) + 8}\, dx = C + \operatorname{RootSum} {\left(24020 t^{4} + 512 t^{2} + 9 t + 2, \left( t \mapsto t \log{\left(\frac{8301312 t^{3}}{6991} - \frac{4919296 t^{2}}{20973} + \frac{776646 t}{34955} + x - \frac{227152}{104865} \right)} \right)\right)} - 6 \operatorname{RootSum} {\left(96080 t^{4} + 648 t^{2} + 48 t + 1, \left( t \mapsto t \log{\left(\frac{486405 t^{3}}{64} - \frac{54045 t^{2}}{128} + \frac{19127 t}{256} + x + \frac{729}{512} \right)} \right)\right)}$$
The graph
The answer [src]
         /                                          /                      3                           2\\          /                                          /                      3                           2\\
         |      4         2                         |23465078   300499808*t    134508634*t   56764064*t ||          |      4         2                         |25116929   300499808*t    134508634*t   56764064*t ||
- RootSum|4804*t  + 1960*t  - 747*t + 67, t -> t*log|-------- - ------------ - ----------- - -----------|| + RootSum|4804*t  + 1960*t  - 747*t + 67, t -> t*log|-------- - ------------ - ----------- - -----------||
         \                                          \1651851      1651851        1651851       1651851  //          \                                          \1651851      1651851        1651851       1651851  //
$$- \operatorname{RootSum} {\left(4804 t^{4} + 1960 t^{2} - 747 t + 67, \left( t \mapsto t \log{\left(- \frac{300499808 t^{3}}{1651851} - \frac{56764064 t^{2}}{1651851} - \frac{134508634 t}{1651851} + \frac{23465078}{1651851} \right)} \right)\right)} + \operatorname{RootSum} {\left(4804 t^{4} + 1960 t^{2} - 747 t + 67, \left( t \mapsto t \log{\left(- \frac{300499808 t^{3}}{1651851} - \frac{56764064 t^{2}}{1651851} - \frac{134508634 t}{1651851} + \frac{25116929}{1651851} \right)} \right)\right)}$$
=
=
         /                                          /                      3                           2\\          /                                          /                      3                           2\\
         |      4         2                         |23465078   300499808*t    134508634*t   56764064*t ||          |      4         2                         |25116929   300499808*t    134508634*t   56764064*t ||
- RootSum|4804*t  + 1960*t  - 747*t + 67, t -> t*log|-------- - ------------ - ----------- - -----------|| + RootSum|4804*t  + 1960*t  - 747*t + 67, t -> t*log|-------- - ------------ - ----------- - -----------||
         \                                          \1651851      1651851        1651851       1651851  //          \                                          \1651851      1651851        1651851       1651851  //
$$- \operatorname{RootSum} {\left(4804 t^{4} + 1960 t^{2} - 747 t + 67, \left( t \mapsto t \log{\left(- \frac{300499808 t^{3}}{1651851} - \frac{56764064 t^{2}}{1651851} - \frac{134508634 t}{1651851} + \frac{23465078}{1651851} \right)} \right)\right)} + \operatorname{RootSum} {\left(4804 t^{4} + 1960 t^{2} - 747 t + 67, \left( t \mapsto t \log{\left(- \frac{300499808 t^{3}}{1651851} - \frac{56764064 t^{2}}{1651851} - \frac{134508634 t}{1651851} + \frac{25116929}{1651851} \right)} \right)\right)}$$
-RootSum(4804*_t^4 + 1960*_t^2 - 747*_t + 67, Lambda(_t, _t*log(23465078/1651851 - 300499808*_t^3/1651851 - 134508634*_t/1651851 - 56764064*_t^2/1651851))) + RootSum(4804*_t^4 + 1960*_t^2 - 747*_t + 67, Lambda(_t, _t*log(25116929/1651851 - 300499808*_t^3/1651851 - 134508634*_t/1651851 - 56764064*_t^2/1651851)))
Numerical answer [src]
-0.511307876283249
-0.511307876283249

    Use the examples entering the upper and lower limits of integration.