Mister Exam

Other calculators

Integral of (x-sin(1/x))/(x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 99              
  /              
 |               
 |         /1\   
 |  x - sin|-|   
 |         \x/   
 |  ---------- dx
 |       2       
 |      x        
 |               
/                
15               
$$\int\limits_{15}^{99} \frac{x - \sin{\left(\frac{1}{x} \right)}}{x^{2}}\, dx$$
Integral((x - sin(1/x))/x^2, (x, 15, 99))
Detail solution
  1. Let .

    Then let and substitute :

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of sine is negative cosine:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is .

        So, the result is:

      The result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                                    
 |        /1\                         
 | x - sin|-|                         
 |        \x/             /1\         
 | ---------- dx = C - cos|-| + log(x)
 |      2                 \x/         
 |     x                              
 |                                    
/                                     
$$\int \frac{x - \sin{\left(\frac{1}{x} \right)}}{x^{2}}\, dx = C + \log{\left(x \right)} - \cos{\left(\frac{1}{x} \right)}$$
The graph
The answer [src]
-cos(1/99) - log(15) + cos(1/15) + log(99)
$$- \log{\left(15 \right)} - \cos{\left(\frac{1}{99} \right)} + \cos{\left(\frac{1}{15} \right)} + \log{\left(99 \right)}$$
=
=
-cos(1/99) - log(15) + cos(1/15) + log(99)
$$- \log{\left(15 \right)} - \cos{\left(\frac{1}{99} \right)} + \cos{\left(\frac{1}{15} \right)} + \log{\left(99 \right)}$$
-cos(1/99) - log(15) + cos(1/15) + log(99)
Numerical answer [src]
1.88489926450228
1.88489926450228

    Use the examples entering the upper and lower limits of integration.