99 / | | /1\ | x - sin|-| | \x/ | ---------- dx | 2 | x | / 15
Integral((x - sin(1/x))/x^2, (x, 15, 99))
Let .
Then let and substitute :
Rewrite the integrand:
Integrate term-by-term:
The integral of sine is negative cosine:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is .
So, the result is:
The result is:
Now substitute back in:
Add the constant of integration:
The answer is:
/ | | /1\ | x - sin|-| | \x/ /1\ | ---------- dx = C - cos|-| + log(x) | 2 \x/ | x | /
-cos(1/99) - log(15) + cos(1/15) + log(99)
=
-cos(1/99) - log(15) + cos(1/15) + log(99)
-cos(1/99) - log(15) + cos(1/15) + log(99)
Use the examples entering the upper and lower limits of integration.